TABLE OF CONTENTS

LIST OF ACRONYMS	v
1.0 INTRODUCTION	1
2.0 SITE BACKGROUND	2
2.1 Site Description	2
2.2 Site Operational History	
3.0 DATA QUALITY OBJECTIVES	
4.0 PHASE I SAMPLING PLAN	7
4.1 Sampling Plan Design	
4.2 Phase 1 Activities	
4.3 Site Reconnaissance	
4.4 Geophysical Survey	
4.5 Soil Gas Investigation	14
4.6 Soil Borings and Soil Sampling	15
4.6.1 Source Area Soil Investigation	16
4.6.2 Operational Area Soil Investigation	20
4.6.3 Background Area Soil Investigation	
4.7 Monitoring Well Installation	
4.8 Groundwater Gauging and Sampling	
4.9 Surface Water and Sediment Sampling	
4.10 Drywell Sampling	
4.11 Fate and Transport Evaluation.	28
5.0 FIELD SAMPLING PROCEDURES	
5.1 Standard Operating Procedures	29
5.2 Sample Designation Procedures	30
PART 2 - COLUMBIA FALLS ALUMINUM COMPANY PHASE 1 SITE	
CHARACTERIZATION QUALITY ASSURANCE PROJECT PLAN	33
6.0 GROUP A – PROJECT MANAGEMENT	34
6.1 Element A3 – Distribution List	34
6.2 Element A4 – Project/Task Organization	34
6.3 Element A5 – Problem Definition/Background	
6.3.1 Basis for the RI/FS	36
6.3.2 Background Information	
6.3.3 Intended Use of the Information	
6.4 Element A6 – Project/Task Description	
6.4.1 Phase I Site Characterization	
6.4.2 Phase I Site Characterization Preliminary Schedule	
6.5 Element A7 – Quality Objectives and Criteria for Measurement Data	
6.5.1 Step 1: Define the Problem	
6.5.2 Step 2: Identify the Goals / Decisions of the Study	
6.5.3 Step 3: Identify Information Inputs	
6.5.4 Step 4: Define the Study Boundaries	
6.5.5 Step 5: Develop the Analytical Approach	46

TABLE OF CONTENTS

(Continued)

6.5.6 Step 6: Specify Performance or Acceptance Criteria	47
6.5.6.1 Quality Assurance / Quality Control	
6.5.6.2 Precision	
6.5.6.3 Accuracy	49
6.5.6.4 Sensitivity	
6.5.6.5 Completeness	50
6.5.6.6 Representativeness	50
6.5.6.7 Comparability	51
6.5.6.8 Decision Error Limits and Uncertainty Evaluation	
6.5.7 Step 7: Develop the Plan for Obtaining Data	
6.6 Element A8 – Special Training Requirements/Certifications	
6.7 Element A9 – Documentation and Records	
6.7.1 Field Logbooks	
6.7.2 Field Datasheets	
6.7.3 Data Storage	
6.7.4 Reporting.	
GROUP B – DATA GENERATION AND ACQUISITION	
7.1 Element B1 – Sampling Process Design	
7.2 Element B2 – Sampling Methods	
7.3 Element B3 – Sample Handling And Custody	
7.3.1 Sample Designation	
7.3.2 Sample Handling	
7.3.2.2 Sample Shipping and Hold Times	
7.3.3 Sample Custody	
7.3.3.1 Field Chain of Custody Procedures	
7.3.3.2 Transfer of Custody and Shipment Procedures	
7.3.3.3 Laboratory Chain of Custody Procedures	
7.4 1 Field Analysical Methods	
7.4.1 Field Analyses	
7.4.2 Laboratory Analyses	
7.5 Element B5 – Quality Control	
7.5.1.1 Field Duplicates	
7.5.1.3 Equipment Blanks	
1 1	
7.5.1.4 Temperature Blanks	
7.5.1.6 Field Blanks	
7.5.2 Laboratory QC Checks	
7.5.2 Laboratory QC Checks 7.5.2.1 Method and Analytical Blanks	
· · · · · · · · · · · · · · · · · · ·	
7.5.2.2 Surrogate Spikes	
1.J.Z.J IIIGHAI MAHUAIUS	UC

TABLE OF CONTENTS

(Continued)

7.6 Element B6 – Instrument/Equipment Testing, Inspection and Maintenance	68
7.6.1 Field Instruments	69
7.6.2 Laboratory Instruments	69
7.7 Element B7 – Instrument/Equipment Calibration and Frequency	70
7.7.1 Field Instruments	70
7.7.2 Laboratory Instruments	70
7.8 Element B8 – Inspection/Acceptance of Supplies and Consumables	71
7.9 Element B9 – Non-Direct Measurements	
7.10 Element B10 – Data Management	72
8.0 GROUP C – ASSESSMENT AND OVERSIGHT	76
8.1 Element C1 – Assessments and Response Actions	
8.2 Element C2 – Reports To Management	
9.0 GROUP D – DATA VALIDATION AND USABILITY	78
9.1 Element D1 – Data Review, Verification, and Validation	78
9.2 Element D2 – Verification and Validation Methods	78
9.3 Element D3 – Reconciliation With User Requirements	80
10.0 REFERENCES	82

TABLES

- 1. Summary of Proposed Phase I Sampling
- 2. Summary of Field Quality Control Samples
- 3. Summary of Laboratory Quality Control Measures by Analysis
- 4. Container Size, Preservation, and Shipping Solid Samples
- 5. Container Size, Preservation, and Shipping Aqueous Samples
- 6. Equipment Calibration and Maintenance Requirements
- 7. Sampling Analyses Soil
- 8. Sampling Analyses Groundwater
- 9. Sampling Analyses Surface Water
- 10. Sampling Analyses Sediment

FIGURES

- 1. CFAC Property Map
- 2. Site Location Map
- 3. Proposed RI Phase I Sample Locations Main Plant Section
- 4. Proposed RI Phase I Sample Locations Historic Landfill Section
- 5. Proposed RI Phase I Sample Locations Northern Section
- 6. Proposed RI Phase I Sample Locations Southeastern Section
- 7. Proposed RI Phase I Sample Locations Southwestern Section
- 8. Proposed RI Phase I Sample Locations Western Section
- 9. Proposed RI Phase I Surface Soil Sampling Grid
- 10. Proposed RI Phase I Background Soil Boring Locations
- 11. Project Organizational Chart

(Continued)

APPENDIX

- A. Standard Operating Procedures
- B. Example Field Datasheets

PLATES

- 1. Proposed RI Phase I Sample Locations Site-wide
- 2. Main Plant Area Site Plan

LIST OF ACRONYMS

AGI Amplified Geochemical Imaging

ARAR Applicable or Relevant and Appropriate Requirements

AST Aboveground Storage Tank

CFAC Columbia Falls Aluminum Company, LLC

CFR Code of Federal Regulation
CLP Contract Laboratory Program

CoC Chain of Custody

CPOCCOPC Chemicals Contaminants of Potential Concern

CSM Conceptual Site Model

DO Dissolved Oxygen

DQO Data Quality Objectives

DU Decision Unit

DUSR Data Usability Summary Report

EDD Electronic Data Deliverable

FNU Formazin Nephelometric Units

FSP Field Sampling Plan GC Gas Chromatography

GIS Geographic Information System

GPR Ground Penetrating Radar

HASP Health and Safety Plan

HCL Hydrochloric Acid

ISM Incremental Sampling Methodology

ITRC Interstate Technology & Regulatory Council

LCS Laboratory Control Sample

LNAPL Light Non-Aqueous Phase Liquids

MCL Maximum Contaminant Levels

MDEQ Montana Department of Environmental Quality

MDL Method Detection Limit

MPDES Montana Pollutant Discharge Elimination System

MS Matrix Spike

MSD Matrix Spike Duplicate
MSW Municipal Solid Waste

NOAA National Oceanic and Atmospheric Administration

NTU Nephelometric Turbidity Units
ORP Oxygen Reduction Potential

LIST OF ACRONYMS (Continued)

PAH Polyaromatic Hydrocarbon Compounds

PCB Polychlorinated Biphenyls

PCDDs Polychlorinated dibenzo-p-dioxins

PCDFs Polychlorinated dibenzofurans

PID Photoionization Detector

PQL Practical Quantitation Limit

PVC Polyvinyl chloride

QA/QC Quality Assurance/Quality Control
QAPP Quality Assurance Protection Plan

RI Remedial Investigation

RL Reporting Limit

RPD Relative Percent Difference SAP Sampling and Analysis Plan

SCDM Superfund Chemical Data Matrix

SLERA Screening Level Ecological Risk Assessment

SOP Standard Operating Procedure

SPL Spent Potliner

SVOC Semivolatile Organic Compounds

TAL Target Analyte List
TBC To Be Considered

TCL Target Compound List

TCLP Toxicity Characteristic Leaching Procedure

USEPA United States Environmental Protection Agency

UST Underground Storage Tank
VOC Volatile Organic Compounds

XRF X-Ray Fluorescence

1.0 INTRODUCTION

On behalf of Columbia Falls Aluminum Company, LLC (CFAC), Roux Associates, Inc., has prepared this Phase I Site Characterization Sampling and Analysis Plan (Phase 1 SAP) for the Remedial Investigation/Feasibility Study (RI/FS) of the CFAC facility located in Flathead County, Montana (hereinafter, "the Site"). The boundaries of the Site as defined in the Phase 1 SAP are depicted in Plate 1. The SAP consists of two parts: 1) a Field Sampling Plan (FSP) that describes the data gathering and sampling activities and associated fieldwork procedures for the Phase 1 Site Characterization; and 2) a quality assurance project plan (QAPP) that describes the policy, organization, functional activities, and quality assurance (QA) and quality control (QC) protocols necessary to achieve the data quality objectives (DQOs) of the RI/FS Phase 1 Site Characterization Program.

This SAP has been developed in general accordance with the USEPA RI/FS Guidance (USEPA, 1988), USEPA Guidance for Quality Assurance Project Plans (USEPA, 2002a) and the Guidance on Systematic Planning Using the Data Quality Objectives Process (USEPA, 2006). The remainder of the SAP is organized as follows:

PART 1 – Field Sampling Plan (FSP)

Section 2 – Site Background

Section 3 – Data Quality Objectives

Section 4 – Phase 1 Sampling Plan

Section 5 – Field Sampling Procedures

PART 2 – Quality Assurance Project Plan (QAPP)

Section 6 – Group A: Project Management

Section 7 – Group B: Data Generation and Acquisition

Section 8 – Group C: Assessment and Oversight

Section 9 – Group D: Data Validation and Usability

2.0 SITE BACKGROUND

This section provides a description of the Site and pertinent background information about the

project.

2.1 Site Description

The facility is located at 2000 Aluminum Drive in Columbia Falls, Flathead County, Montana

(Figure 1). The Site is accessed by Aluminum Drive via North Fork Road (County Road 486).

The Site is approximately 2.0 miles northeast from the center of Columbia Falls and the Site is

accessed by Aluminum Drive via North Fork Road (County Road 486). According to the 2013

Census (www.census.gov), the total population of Columbia Falls is 4,796. The nearest residences

are located approximately 0.80 miles west of the Site and the nearest groundwater wells used for

drinking water are located within 1 mile from the Site. Existing onsite wells are not used for

potable water.

The total property owned by CFAC is approximately 3,196 acres (Figure 1). However, the

historic footprint of operations and a peripheral area (collectively referred to hereinafter as the

"Site"), consists of approximately 1,340 acres bounded by Cedar Creek Reservoir to the north,

Teakettle Mountain to the east, Flathead River to the south, and Cedar Creek to the west

(Figure 2). The non-industrial areas of the Site have been previously used for recreational

purposes such as hunting and fishing, etc. The remainder of the CFAC owned property is

located south of Flathead River and was never used for industrial operations.

Buildings and industrial facilities located at the Site include offices, warehouses, laboratories,

mechanical shops, paste plant, coal tar pitch tanks, pump houses, casting garage, and the potline

facility. The Site also includes seven closed landfills, one active landfill, material loading and

unloading areas, two closed leachate ponds, and several wastewater percolation ponds operating

under MPDES permits. A rectifier yard and switchyard owned by Bonneville Power

Administration and a right-of-way for the Burlington Northern Railroad are also within the Site

boundaries.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

ED_002345B_00009298-00008

A summary of the physical setting of the Site, including a review of the Site topography, climate,

geology, hydrogeology, and groundwater flow is provided in Sections 2.0 and 3.0 of the RI/FS

Work Plan.

2.2 Site Operational History

Aluminum was produced at the Site from 1955 to 2009. The facility began with two potlines in

1955 and an annual capacity of 67,500 tons per year (using 120 pots per potline). A third potline

was added in 1965, and a fourth and fifth potline were added 1968, increasing total aluminum

production capacity at the Site to 180,000 tons per year.

During aluminum production, the Hall-Heroult process and the Vertical Stud Soderburg

technology was used to reduce alumina into aluminum. In the Hall-Heroult process, aluminum

oxide is dissolved into sodium fluoride (cryolite) bath in a carbon-lined pot heated to 960

degrees Celsius. Electric current runs through a carbon anode made of petroleum coke and pitch,

to a carbon cathode (the steel pot, firebrick liner, and a layer of carbon paste), reducing the

aluminum ion to aluminum metal. The anode is consumed during the reaction, and molten

aluminum forms at the bottom of the pot. The molten aluminum is tapped from the pot and was

blended to an alloy (depending on the order). The aluminum is then transferred to the casting

garage, and cast into ingots as the finished product for offsite shipment.

A Rod Mill, in the southwest corner of the Main Plant Area, was also operated until the late

1960s. The Rod Mill was used to produce aluminum wire and cable. After its use as a Rod Mill,

the building was used as a warehouse. The aluminum production process generated several

waste products, most notably spent potliner (SPL). The sodium in the cryolite bath gradually

penetrates the carbon paste lining of the pot, causing the carbon to swell and eventually fail. The

typical lifespan of the carbon cathode is 5-7 years. To re-use the pot, the carbon lining of the pot

is removed and replaced with a new carbon lining. The SPL consists of the thick layer of carbon

bonded to an insulating brick layer, containing fluoride, sodium, aluminum, and small amounts

of cyanide. The fluoride and sodium in the SPL is from the sodium fluoride (cryolite) bath, and

the cyanide forms in the cathode as a side chemical reaction during aluminum production.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

DATE: <u>Nov 2015</u>

The aluminum production process generates air emissions, including particulate fluoride,

hydrogen fluoride, and polyaromatic hydrocarbon compounds (PAHs). The main sources of air

emissions are typically the Paste Plant and the aluminum reduction facility (USEPA, 1998).

Air pollution from the smelting process was controlled using wet scrubbers until 1976, and air

pollution from the Paste Plant also used a wet scrubber from 1955 to 1999. Waste water from

the wet scrubbers was discharged to the North Percolation Ponds (CFAC, 2003). The wet

scrubbers were replaced with dry scrubbers in 1976, and an analysis of the sludge by the

Columbia Falls Reduction Plant laboratory staff indicated that the sludge is about 80% calcium

fluoride on a dry weight basis, and also contained calcium oxide, magnesium oxide, sodium

oxide and iron oxide (Hydrometrics, 1993). The sludge generated from the scrubbers was

landfilled on Site.

Raw materials were delivered to the Site predominantly by rail, and include aluminum oxide,

petroleum coke, coal tar pitch and fluoride/cryolite. Alumina was delivered to the off-loading

buildings, where the alumina was transferred to the silos between the potlines. Petroleum coke

and coal tar pitch are delivered to the northeast side of the plant and mixed in the Paste Plant to

form briquettes to be used as anodes.

Solid waste generated by the aluminum production process was primarily disposed of in on-site

landfills until the mid-1980s, after which SPL was shipped offsite for disposal as hazardous

waste. In addition to SPL and wet scrubber sludge, the on-Site landfills were used to dispose of

other wastes such as: dross, solvents, potliner refractory wastes (non-hazardous - likely the scrap

calcined petroleum coke, ore, cryolite, aluminum fluoride, bath, brick, concrete), scrap metal,

wood, used oil and municipal solid waste (MSW). A summary of the years of operation and

types of wastes reportedly disposed of at each landfill over time is provided in Section 2.72 of

the RI Work Plan.

Liquid waste generated as a result of the aluminum reduction process was discharged to several

percolation ponds. The facility discharged to the percolation ponds in accordance with a

MPDES permit, first issued in 49851994. A summary of the liquid waste disposal areas is

provided in Section 2.7.2 of the RI/FS Work Plan.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

ED_002345B_00009298-00010

3.0 DATA QUALITY OBJECTIVES

The DQOs for the RI/FS were developed using the USEPA DQO process (USEPA, 2006), which

is designed to clarify the objectives of data collection and maximize efficiency during the data

collection process. The DQO process is a multi-step, iterative process that ensures that the type,

quantity, and quality of environmental data used in the decision making process are appropriate

for its intended application.

The objectives for the RI are:

• Identify and characterize sources of contaminants of potential concern (COPCs);

• Determine the nature and extent of Site-related COPCs in soil, groundwater, surface

water, sediment, and sediment porewater;

• Understand the transport and fate of COPCs in environmental media at the Site;

• Identify any complete or potentially complete exposure pathways (considering current and also potential future land use) and evaluate current and future human health and

ecological risks posed by the COPCs present at the Site; and

• Support the development and evaluation of remedial alternatives for the Site.

A summary of the step-by-step DQO process followed to develop the Scope of Work for the

Phase I Site characterization field activities is provided in Section 6.5. The basis of the sampling

design for Phase 1 is described below.

The Phase I Site Characterization program has been designed to identify and/or confirm source

areas and associated COPCs, as well as provide a broad characterization of the hydrogeologic

conditions and the nature and extent of contamination across the Site. Based on the current

understanding of the Site conditions and CSM, the following objectives were established for

Phase I Site Characterization Program:

• Evaluate current conditions at all identified RI areas and Site features to determine which RI areas and Site features require further investigation and/or quantitative evaluation in

the baseline risk assessment. The RI Areas that will be investigated during Phase I

include:

Landfills and Leachate Ponds;

Percolation Ponds;

- The Main Plant Area;

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

- Operational Area Soils;
- Site-wide Groundwater; and
- Surface Water Features.
- Refine the list of COPCs that require further investigation at various RI areas and Site
 features so lists of laboratory analyses can be reduced during subsequent phases of
 investigation;
- Refine the understanding of groundwater flow beneath the Site, particularly in the vicinity of potential receptors;
- Develop a more detailed understanding of bedrock topography and the depths, thicknesses and extents of the various hydrogeologic units, both of which may influence groundwater flow and the distribution of COPCs in the subsurface;
- Begin to evaluate seasonal influences on groundwater/surface water interactions and contaminant concentrations in groundwater and surface water;
- Develop data to support the preparation of the baseline risk assessment work plan; and
- Develop data to support identification and screening of remedial technologies as part of the FS.

The results of the Phase 1 Site Characterization will be used to update the preliminary Conceptual Site Model provided in Section 3.0 of the RI/FS Work Plan and prepare the Baseline Risk Assessment Work Plan. This process will enable identification of any outstanding data that still needs to be collected in order to complete the RI Site characterization and conduct a risk assessment. The identified data needs and the scope of work to collect the data will be presented in a Phase II Site Characterization SAP will include updated data quality objectives to evaluate the data needs required to complete the RI and risk assessment.

4.0 PHASE I SAMPLING PLAN

The Phase I Site Characterization Scope of Work was developed based on the data quality

objectives and the data requirements identified during preparation of the RI/FS Work Plan.

The description of the basis for the sampling plan design is provided below, followed by a

description of the sampling plan for the field activities planned for Phase I.

4.1 Sampling Plan Design

As described in Section 4.2, several different types of data gathering and sampling activities are

required to achieve the project objectives. The locations and numbers of sampling points

associated with each type of activity were typically selected based upon judgmental sample

design. As described in USEPA guidance on sampling design (USEPA, 2002b), judgmental

sampling design is appropriate when there is reliable historical and physical knowledge about the

feature or condition under investigation; or, when the objective of the investigation is to screen

an area(s) for the presence or absence of contamination at levels of concern, such as risk-based

screening levels. Both of these conditions are generally applicable for the current phase of work.

Specifically, there is knowledge about most Site features (i.e., locations and dimensions,

historical use) and the goals of the Phase 1 Site Characterization program include use of risk-

based screening levels to identify areas for further investigation and/or inclusion in subsequent

risk assessment.

Although the sampling plan for known or suspected source areas is judgmental in design, it will

be conducted using a systematic phased approach. Field reconnaissance will be conducted first,

followed by geophysical surveys and soil gas surveys. The findings from these activities will be

evaluated and used to refine source area sample locations such that they are biased towards areas

where COPCs are considered more likely to be present.

Judgmental sampling design has also been used to develop the scope of work for investigation

of hydrogeologic and groundwater quality conditions at the Site. Per USEPA guidance,

judgmental design is appropriate considering the scale of the Site and lack of adequate

probabilistic investigation methods.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

ED 002345B 00009298-00013

A stratified random sampling approach will be utilized as per USEPA guidance on sampling

design (USEPA, 2002b) and the Interstate Technology & Regulatory Council (ITRC)

Incremental Sampling Methodology (ITRC, 2012) to characterize soil quality conditions in the

surface soil and shallow subsurface soil (0 to 0.5 ft-bls and 0.5 to 2.0 ft-bls, respectively) within

large areas of the Site where there are no specific source areas identified, but aerial photographs

or Site knowledge suggests evidence of historical operations activity. As described in

Section 4.6.2, an incremental sampling methodology will be utilized in these areas to produce a

better estimate of average soil conditions within individual grid cells uniformly distributed across

the large area.

As discussed in Section 6.1 and Section 6.2 of the RI/FS Work Plan, COPCs will be evaluated

during the Phase I Site Characterization based upon comparison of analytical results to human

health screening levels and ecological screening levels drawn from the following sources as

indicated for each media type:

Human Health Screening Levels

Soil

EPA Risk-Based Screening Tables: residential soil RSL, Risk-based soil screening level

(SSL) for the protection of groundwater

Montana Tier 1 Risk-based Corrective Action Guidance for Petroleum Releases
 (Santanha 2000) for a statuture and a sta

(September 2009) for petroleum compounds

Surface Water and Groundwater

EPA Risk-Based Screening Tables: tapwater RSL, drinking water maximum

contaminant level (MCL)

• Montana DEQ Circular DEQ-7: http://www.deq.mt.gov/wqinfo/circulars.mcpx

Sediment

• EPA Risk-Based Screening Tables: residential soil RSL

Ecological Screening Levels

Soil

• EPA Ecological Soil Screening Levels: http://www.epa.gov/ecotox/ecossl/

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

ED 002345B 00009298-00014

- Los Alamos National Laboratory (LANL) ECORISK Database, Los Alamos, New Mexico. http://www.lanl.gov/community-environment/environmental-stewardship/ protection/eco-risk-assessment.php
- Sample, BE, DM Opresko, GW Suter II. 1996. *Toxicological Benchmarks for Wildlife:* 1996 Revision. Oak Ridge National Laboratory. Document ES/ER/TM-86/R3. June 1996. http://www.esd.ornl.gov/programs/ecorisk/documents/tm86r3.pdf
- Region 5 RCRA Ecological Screening Levels, August 22. http://www.epa.gov/Region5/waste/cars/esl.htm

Surface Water and Groundwater

- EPA National Recommended Water Quality Criteria: http://water.epa.gov/scitech/swguidance/standards/criteria/current/index.cfm
- Suter II, GW and CL Tsao. 1996. *Toxicological Benchmarks for Screening Potential Contaminants of Concern for Effects on Aquatic Biota: 1996 Revision.* Oak Ridge National Laboratory. Document ES/ER/TM-96/R2. June 1996. http://www.esd.ornl.gov/programs/ecorisk/documents/tm96r2.pdf
- Canadian Council of Ministers of the Environment (CCME). Canadian Water Quality Guidelines, Summary Table, http://st-ts.ccme.ca/
- Montana Department of Environmental Quality (DEQ) Circular DEQ-7: http://www.deq.mt.gov/wqinfo/circulars.mcpx

Sediment

- MacDonald, D.D., C.G. Ingersoll, and T.A. Berger. 2000. Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems. *Archives of Environmental Contamination and Toxicology* 39:20-31.
- Ingersoll, C.G., P.S. Haverland, E.L. Brunson, T.J. Canfield, F.J. Dwyer, C.E. Henke, N.E. Kemble, D.R. Mount, and R.G. Fox. 1996. Calculation and evaluation of sediment effect concentrations for the amphipod *Hyalella azteca* and the midge *Chironomus riparius; and*
- * Region 5 RCRA Ecological Screening Levels, August 22. http://www.epa.gov/Region5/waste/cars/esl.htm
- USEPA Region 3 Biological Technical Assistance Group Freshwater Sediment Screening Benchmarks (August 2006)

Concentrations of naturally occurring substances will also be compared to concentrations

measured at background and upgradient sampling locations to evaluate whether the measured

concentrations of those substances are related to the Site. Human health risk-based screening

levels (RSLs) provided in the EPA Risk-Based Screening Tables will be based on target cancer

risk of 1E-06 and target hazard quotient of 0.1. For the purposes of identifying COPCs, the

lowest value, across all sources, should be selected as the screening level.

4.2 Phase 1 Activities

As discussed in Section 4.2 of the RI/FS Work Plan and summarized in Section 3.0 above, the RI

will be conducted as an iterative approach and will include at least two phases of investigation

work. The following types of data gathering and sampling activities will be conducted as part of

the Phase 1 Site Characterization program:

Site Reconnaissance

Geophysical Survey

VOC Focused Passive Soil Gas Sampling and Landfill Gas Investigation

Soil Boring and Soil Sampling

Monitoring Well Installation and Gauging

Groundwater Sampling

Surface Water Sampling

Sediment Sampling

Drywell Sampling

Waste Characterization Sampling, if needed

Items that are currently planned to be conducted during subsequent phases of investigation

include, but are not limited to:

Topographic survey of the landfills

• Investigation of the physical landfill caps, where present

• Evaluation of the hydraulic properties of the various hydrogeologic units at the Site via

slug testing and/or aquifer testing

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

ED_002345B_00009298-00016

Sediment Porewater Sampling

The remainder of this Section describes the locations and sampling rationale for the Phase I field activities. A Site-wide summary of the proposed investigation locations are shown on Plate 1. Additionally, the proposed investigation locations are shown for specific areas of the Site in Figures 3 through 8.

Table 1 provides a summary of the samples defined for collection during the Phase I Site Characterization. The information in Table 1 includes: latitude and longitude (determined from GIS), the sample location type, sample media type, the closest Site feature to the sample, the rationale for each sample, and the proposed analyses for each sample. For the sample rationale, samples labeled as "within feature" were generally selected to characterize quality beneath the feature and samples labeled as "boundary of feature" were generally selected to delineate quality immediately outside the feature and determine aerial extent of potential COPCs. Additionally, samples proposed near the Flathead River and residential areas are generally positioned to evaluate conditions downgradient of the Site features and near potential receptors. As indicated in the RI/FS Work Plan, it is anticipated the number of samples and locations of samples will be modified based upon the results pre-intrusive field activities. The scope of such modifications and the associated rationale will be detailed in a SAP addendum prior to implementation.

4.3 Site Reconnaissance

A detailed Site reconnaissance will be performed prior to conducting other field investigation activities. The objectives of the Site reconnaissance are to:

- Field verify existing base maps and aerial photographs (check for accuracy of map coordinates versus GPS and survey data);
- Refine soil boring locations that are proposed to be biased towards areas of known or suspected areas of contamination;
- Identify any additional areas / site features where COPCs potentially were released, and where samples should be collected, based upon visual indications of waste materials, soil piles, staining, stressed vegetation, etc.;
- Develop a further understanding of drainage / overland flow and document any erosional features at the Site that may be contaminant migration pathways;

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

Identify habitat areas for further evaluation in the SLERA; and

• Confirm accessibility and determine equipment requirements for access to proposed

sampling locations.

The Site reconnaissance will be conducted using a systematic approach. As a first step of the

ground-level Site reconnaissance, a licensed land surveyor will establish coordinates of several

fixed locations at the Site. The accuracy of the existing geo-referenced maps and aerial

photographs will be evaluated by comparing coordinates obtained from GIS with the coordinates

established by the surveyor. Likewise, the accuracy of hand-held GPS will be evaluated by

comparing GPS coordinates with coordinates established by the surveyor. Any discrepancies in

coordinates between the various locating methods will be resolved prior to proceeding with

additional elements of the Site reconnaissance task. The subsequent ground level field

reconnaissance will consist of qualified scientists or engineers visually inspecting and photo-

documenting the conditions of the Site features within the various RI Areas.

Key selected subcontractors (i.e., surveyor, geophysical survey, drilling, etc.) will take part in

selected aspects of the field reconnaissance to confirm equipment requirements for accessibility

and to confirm the technical approach for their respective assignments.

Calbag Resources, LLC (Calbag) was recently retained by CFAC to complete the

decommissioning and removal of certain structures, machinery, equipment, and waste materials

at the Site. Prior to beginning RI/FS field activities, planning meeting(s) will be conducted to

ensure that the Calbag activities and the Phase 1 Site Characterization program are properly

coordinated. The purpose of this planning will be to determine how best to sequence and/or

adjust RI/FS work activities in the vicinity of the ongoing Site decommissioning activities, to

ensure that all of the RI/FS objectives are met while also ensuring worker health and safety and

allowing for continued progress of the Site decommissioning project.

The Site reconnaissance will also include an inspection of existing Site monitoring wells to

evaluate the integrity and accessibility for use during the investigation. Any deficiencies or

obstructions will be noted for future consideration when planning sampling activities.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

ED_002345B_00009298-00018

The Site reconnaissance will also include a habitat and biological survey. The Survey will include both terrestrial and aquatic habitats and will allow for a detailed characterization of the environmental setting as it pertains to the SLERA. The survey will be conducted by a team of two biologists over a period of one to two weeks. It will include walking the entire Site.

including visual inspection and photo-documentation of all distinct habitat areas and flora and

fauna observed within these areas and recording of field notes regarding these observations.

4.4 Geophysical Survey

A geophysical survey will be completed as a screening tool that will allow for initial assessment of subsurface characteristics prior to drilling activities. The geophysical survey will employ electrical resistivity technology with the goal of providing a preliminary understanding of approximate depth to bedrock, approximate depth to groundwater, approximate depth of Site

features, potential changes in subsurface hydrogeological conditions and potentially other

subsurface anomalies that may contribute to the delineation of source areas.

The initial geophysical survey will be implemented in the vicinity of the West Landfill and the

Wet Scrubber Sludge Pond. These two source areas have been previously attributed to the

COPCs present at the Site. Additionally, geophysics will be applied to a transect perpendicular

to Teakettle mountain with the goal of understanding how bedrock dips away from Teakettle

Mountain and to evaluate any other potential hydrogeologic aspects of the subsurface.

The actual methodology and scope of the various elements of the geophysical survey will be

finalized following the Site reconnaissance meetings with the selected geophysical

subcontractor, based upon an evaluation of the potential benefits towards achieving the RI objectives. A summary of the proposed geophysical Scope of Work will be submitted to the

USEPA for review prior to conducting the field work. Additionally, the results of the initial

geophysical surveys will be evaluated to determine if the technology is applicable and beneficial

within the Site and if additional surveys should be conducted.

It is anticipated that ground penetrating radar (GPR) can provide useful information to confirm

the horizontal extent of landfills and associated landfill caps, as well as information on cap

thickness. Therefore, GPR will be utilized as part of the landfill cap investigation. In addition,

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

ED_002345B_00009298-00019

GPR will be utilized when appropriate for mark out of subsurface utilities or obstructions in the

area of proposed drilling locations.

The results of the geophysical survey will be evaluated prior to conducting intrusive activities

and results will be considered when finalizing drilling locations and depths. Any changes to the

FSP as a result of the geophysical surveying activities will be described in a Phase 1 SAP

Addendum and summarized in the summary report.

4.5 Soil Gas Investigation

The soil gas investigation will consist of two elements: 1) field screening of landfill soil gas; and

2) a passive soil gas investigation at the former hazardous waste drum storage area and the

former vehicle fueling area. A description of the work associated with each element is described

below.

Field screening of soil gas will be conducted at landfills to evaluate the potential for methane

and VOCs. The screening will be conducted under falling barometric pressure conditions

(minimum 12 hours) in order to minimize the potential for false negative results. Prior to

the sampling, the barometric pressure will be confirmed using data from the weather station

located at Kalispell Glacier Park International Airport, as is further described in Section 7.9.

At each location, a soil gas probe constructed of a 0.5 inch diameter stainless steel pipe with

a welded and slotted tip on the end will be pushed into the subsurface to a depth of

approximately three-five feet. After advancing the probe to the final depth, the annular space

around the probe will be sealed at the surface with modeling clay or equivalent to minimize

potential short-circuiting of ambient air during sampling. A short length of Teflon tubing will be

attached to the soil gas probe and a vacuum pump, and then the probe will be purged for five

minutes to allow the inflow of vapors. The monitoring point will be tested using a tracer gas

(helium), prior to sample collection, to verify that ambient air is not diluting the soil vapor during

screening. A GEM 2000+ Landfill Meter will then be attached to the Teflon tubing and readings

recorded for methane, carbon monoxide, hydrogen sulfide, oxygen and barometric pressure. A

PID will then be attached to screen for VOCs. Once the readings are completed, the soil gas

probe will be extracted from the ground and the hole will be sealed.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

ED 002345B 00009298-00020

A passive soil gas investigation will be conducted at the hazardous waste drum storage area and

the former vehicle fueling area. The proposed sample locations are shown in Figures 3

through 8. The objective of the passive soil gas investigation is to identify potential VOC hot

spots (if any) so that subsequent intrusive sampling can be focused in these areas to determine if

VOCs are a COPC.

The passive soil gas investigation will be conducted using Amplified Geochemical Imaging,

LLC (AGI) passive sampling devices (AGI, 2015). The AGI passive sampler is a proprietary,

passive, sorbent-based sampler which collects volatile and semivolatile compounds present in

soil gas. The AGI passive samplers will be installed within a 1/2 to 1-inch (2.5cm) diameter hole

and to a depth of approximately three feet (1 meter) five feet below grade; therefore resulting in

minimal Site disruption and allowing for a screening of Site features. AGI recommends that for

site assessment applications where the primary objective is identification of potential source

areas and extent of contamination, the suggested exposure time for soil gas sampling is 7 to 10

days (AGI, 2015).

Following collection, the AGI passive samplers will be shipped under chain of custody to AGI

for analysis of VOCs according to a modified USEPA 8260 analytical method.

The passive sampling is meant to provide an initial screening of vapor conditions. Subsequent

soil borings will be biased towards the locations that exhibited the highest VOC concentrations,

if any. If the passive soil gas investigation results suggest that a source area may exist that

extends beyond the investigated area, additional vapor sampling and intrusive activities would be

considered to further evaluate the source area conditions.

4.6 Soil Borings and Soil Sampling

This section describes the Phase I soil boring and soil sampling program. The Phase I activities

were designed to collect additional geologic data, characterize and delineate potential source

areas, and assess soil quality conditions across the Site. The remainder of this section describes

the sampling location and procedure rationale.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

ED_002345B_00009298-00021

4.6.1 Source Area Soil Investigation

Soil borings and soil sampling will be conducted in the vicinity of the RI Areas which have been

identified as potential source areas in the preliminary CSM. The proposed Phase I source area

investigation locations are shown in Figures 3 through 8 and are summarized on Table 1.

Proposed Phase I locations around these areas were selected based on a judgmental sampling

design (USEPA, 2006) that targets the potential source areas. The number of proposed borings

and spacing of proposed borings in Phase I were selected with the goal of providing initial

characterization of the nature and extent of contamination associated with individual features.

The proposed locations are typically within the boundaries of the Site feature being investigated

in an effort to characterize the soil conditions immediately beneath the feature. In addition, there

are proposed borings around the perimeter of most features to assess for impacts to the adjacent

areas. For features with engineering controls already in place (e.g., landfill caps), proposed

boring locations were placed adjacent to and downgradient of the feature in an effort not to

disturb the existing controls. The proposed locations are dependent on Site conditions and may

potentially be modified in the field by the RI field manager. As previously discussed, the

findings from pre-intrusive investigation activities will be evaluated and used to refine source

area sample locations such that they are biased towards areas where COPCs are considered more

likely to be present.

Soil borings will be completed utilizing either sonic-rotary drilling or direct-push

(e.g., Geoprobe) techniques. Use of the Geoprobe will be limited to borings that are not

proposed for completion as monitoring wells, as the depth of these borings will typically be 12 ft.

Sonic-rotary drilling methods will be used at all locations where wells are to be installed and at

those locations where subsurface conditions prevent the Geoprobe from achieving desired

sampling depths.

An experienced drilling subcontractor will be selected prior to mobilization for field activities.

All drilling activities will be overseen by the RI Manager and onsite engineers/scientists with

experience in oversight of drilling programs.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

ED 002345B 00009298-00022

Prior to drilling, Site plans and drawings will be evaluated and facility personnel consulted to identify whether subsurface utilities or obstructions may be present in the vicinity of the drilling locations. With areas of the Site where subsurface borings or utilities may be present, the drilling locations will be pre-cleared using non-mechanical methods (e.g., hand clearing, air knife, etc.) to a minimum of five ft-bls.

At each proposed location, continuous core samples will typically be collected from land surface to the bottom of the borehole in an effort to obtain lithologic and soil screening data. All of the soil samples will be described in accordance with the Unified Soil Classification System. The core samples will be examined for evidence of potential impacts (i.e., staining, odor) and screened for the potential presence of VOCs using a PID.

The final depth of each soil boring will vary depending on the purpose and location of the boring. It is anticipated that all soil borings will be completed to a minimum depth of 12 ft-bls.

At soil borings locations where both water table and deeper monitoring wells are to be installed, the soil boring for the deeper well will be drilled first. The deeper well will serve as the location of collection of samples for lithologic characterization and analytical laboratory testing.

Three <u>discrete</u> soil samples will typically be collected for laboratory analyses from each soil boring within unpaved areas: a <u>discrete</u> surface soil sample will be collected from the top six inches of soil; a <u>discrete</u> shallow soil sample from the interval of 0.5 to 2 ft-bls; and a <u>discrete</u> deeper sample from a depth of 10 to 12 ft-bls. In paved areas, the surficial sample will be omitted (due to pavement) and shallow sample will be collected from the 2-ft depth interval immediately beneath the pavement materials and deeper sample will be collected from 10 to 12 ft-bls. If contamination is evident in the 10 to 12-foot soil sample interval, drilling and sampling will proceed until contamination is no longer evident in the soil samples, until groundwater is encountered, or the limit of the equipment has been reached. Additional <u>opportunistic</u> soil samples may be collected and sent for laboratory analyses during soil boring activities based on visual observations and/or soil screening results encountered during drilling activities. Opportunistic samples may be collected if contaminants are evident at different depths, including deeper or shallower than 12 ft-bls, subsurface conditions indicate the presence of preferential

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

pathways, or subsurface conditions prevent sampling at the pre-determined depths described

above.

Soil samples will be analyzed for the following parameters:

Target Compound List (TCL) VOCs (excluding surface soil samples) via USEPA

Method 8260;

TCL SVOCs via USEPA Method 8270;

TAL Metals via USEPA Method 6010;

TCL PCBs via USEPA Method 8082;

TCL Pesticides (surface samples only) via USEPA Method 8081;

Total Cyanide via Method 9012; and

Fluoride via USEPA method 300.

A soil sample will also be collected from the five to ten feet below the water table at each deep

monitoring well location and analyzed for:

Total Cyanide via USEPA Method 9012; and

Fluoride via USEPA method 300.

In addition to the sampling listed above, 20% of the soil samples collected from the surface

interval (0 – 0.5 ft-bls) will be laboratory analyzed for lead in both sieved (250 microns/No. 60

sieve) and bulk form. The samples selected for both analyses will account for different sources,

lithology, or other characteristics that could influence the ratio between sieved and unsieved

sample concentrations. Once the two sets of data are available, a ratio of sieved analysis to bulk

analysis can be calculated for each sample, and then a 95% upper confidence level (UCL) on the

mean of all the ratios can be calculated. The UCL of the ratios may then be used as a factor that

can be applied to historic, current, and future bulk samples to estimate lead concentrations.

In addition to the sampling parameters listed above, total organic carbon will be analyzed at each

discrete soil interval sampledsample within the deep monitoring well locations to support the

preparation of the risk assessment and perform fate and transport evaluation. Additionally, a

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP

REVISION# 0 DATE: Nov 2015

number of <u>discrete</u> source area surface and shallow soil samples will be selected for grain size, bulk density and moisture content analysis <u>for use in fate and transport evaluation as per the MDEQ guidance document titled "Technical Guidance General Field Data Needs for Fate and Transport Modeling" (MDEQ, 2008).</u>

The soil samples collected within the Rectifier Yards will be analyzed for polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) via USEPA Method 8290. As described in Sections 2.8.5 and 2.8.8. of the RI/FS Work Plan, historical fires and PCB remedial actions have been documented within the Rectifier Yards. PCDDs and PCDFs are byproducts that occur when PCB fluid is partially burned.

The specific soil sampling depths and sampling analyses described above will aid in determining the nature and extent of contamination within the Site. The surface soil samples collected from land surface to a depth of six inches will be utilized to determine if contaminants are present at the surface and to evaluate the ingestion, inhalation, and dermal contact exposure routes for Site visitors / trespassers as well as for Site workers performing routine, non-intrusive work activities. Subsurface soil samples collected from 0.5 to 2 ft and from 10 to 12 ft will allow for an understanding of vertical distribution of COPCs and will be utilized to evaluate the presence of COPCs at depths where exposure would occur for Site workers who perform intrusive work activities, such as excavation. Soil samples collected from beneath the water table will provide further vertical delineation of potential COPCs in soil that could potentially be acting as a source of groundwater contamination.

Select soil borings are proposed to be completed as monitoring wells as described in Section 4.5. At deep boring monitoring well locations where potential confining units beneath the water table are encountered during the drilling of soil borings (as evidenced by lithology observed in the continuous core samples) shallow contamination is evident based on field observations, double-cased sonic well drilling and/or other sonic drilling procedures will be used to hydraulically isolate monitoring wells screened with the deeper glacial aquifer(s) from the overlying groundwater system; thereby minimizing any potential for cross contamination. Double casing will be completed utilizing the following steps: 1) Advancing the inner (smaller diameter) sonic casing ahead of the outer casing to characterize lithology. When a confining layer is

ROUX ASSOCIATES, INC.

Page [PAGE]

encountered, the initial continuous coring within the inner casing establishes the depth of this layer 2) Advancing the outer sonic casing into the confining layer, sealing off the upper aquifer 3) Continuing the advancement of the inner sonic casing to the desired depth where a well may be installed; and 4) After the well is set, the process is reversed by filling the annular space with grout and vibrating and extracting both the inner and outer casing.

Soil borings not completed as monitoring wells will be backfilled with a combination of drill entrings and clean sandabandoned using grout or bentonite chips, with the top three feet of each boring backfilled with soil cuttings. If visual impacts are observed during field screening of soils, the cuttings will be drummed for disposal and only clean material will be used for backfill.

4.6.2 Operational Area Soil Investigation

A soil sampling program will be conducted in areas of the Site not currently identified as potential source areas in the preliminary CSM, but where historical operations may have been conducted based on review of aerial photographs and understanding of Site operations. As part of the operational area soil investigation, surface and shallow subsurface soil samples will be collected to assess soil quality conditions, generate data for use in risk assessment, and to screen for the presence of any additional potential source areas that have not been previously identified in the CSM (if any).

The operational area soil investigation will be implemented using an incremental soil sampling method in general accordance with the USEPA guidance for sampling design (USEPA, 2002b) and the Interstate Technology & Regulatory Council (ITRC) Incremental Sampling Methodology (ITRC, 2012). The incremental sampling methodology (ISM) provides representative samples of specific soil volumes defined as decision units (DUs) by collecting numerous increments of soil (typically 30 or more increments) that are combined, processed, and subsampled according to specific protocols. Evaluation of study results has shown that ISM for soil provides a better estimate of the average (mean) concentration within "decision units" (i.e., individual grid cells of specified size), and within the overall area of investigation, than can be obtained from a conventional discrete sampling approach. Decision units that exhibit COPCs at concentrations exceeding ARARs or risk-based criteria may require a more focused investigation during subsequent phases of the RI.

ROUX ASSOCIATES. INC.

Page [PAGE]

The Operational Soil Area will have two different types of decision units. Given the large operational area that is to be investigated, a decision unit (i.e., grid cell) size of approximately one acre was selected for establishing the sampling grid. As shown in Figure 409, the sampling grid consists of 43 decision units. The shape / size of decision units is modified as required in the vicinity of Site features that are part of the source area investigation. The entire Operation Soil Area can also be treated as a single DU, with 43 individual sampling units from which incremental soil samples will be collected. This approach is beneficial because there is no specific source area that has been defined within the Operational Soil Area. This approach will allow for calculation of the mean soil concentration and 95% upper confidence limit (UCL) of the mean for all analytes across the area based upon 43 ISM sample locations. These data can be used in comparison to background concentrations, as well as to compare maximum concentrations detected in entire dataset to conservative screening criteria.

The sampling will be conducted at the frequency of one incremental surface soil sample (0 to 6-inches bls) and one incremental shallow soil sample (0.5 to 2 ft-bls) per one acre DU. Each incremental soil will consist of up to 32 discrete grab samples that are evenly distributed within four quadrants of each DU (i.e., 8 samples per quadrant). Within each quadrant, the 8 locations will be randomly distributed. The coordinates of the random locations will be established using GIS and a random number generator, and field personnel will utilize a hand-held GPS (with submeter accuracy) to navigate to each location for sample collection. The ISM procedure is further described in the Roux SOP 5.12 provided in Appendix A.

Soil samples collected using ISM will be analyzed for the same analyses described in Section 4.46.1, including 20% of the surface samples sieved and analyzed for lead. In addition to the ISM soil sampling described above, approximately 16 soil borings will be completed within the operational soil investigation areas. Soil borings will be completed utilizing the same methods as described in Section 4.4.1. Soil samples collected within the operational areas will be analyzed for the same analyses described in Section 4.4.1.

4.6.3 Background Area Soil Investigation

A soil sampling program will be conducted in background areas of the Site not currently identified as potential source areas in the preliminary CSM. The Background Area was

ROUX ASSOCIATES, INC.

Page [PAGE]

generally defined in the western portion of the Site where aerial photographs show unforested

areas and industrial operations were not known to take place. As part of the Background Area

soil investigation, soil samples will be collected to assess background soil quality conditions and

generate data for use in risk assessment, and to screen for the presence of any additional potential

source areas that have not been previously identified in the CSM (if any).

Borings proposed within the Background Area are shown on Figure 10. Soil sampling from the

borings within the Background Area will be conducted at the same frequency of the source area

borings including one surface soil sample (0 to 6-inches bls), one shallow soil sample (0.5 to

2 ft-bls), and one deeper sample from 10-12 ft-bls. Soil samples collected within the

Background Area will be analyzed for the same analyses described in Section 4.4.1.

If data collected from the background locations suggest additional source areas of COPCs are

present, additional background locations will be selected and sampled in consultation with the

USEPA.

4.7 Monitoring Well Installation.

Selected soil borings are proposed to be completed as monitoring wells. The new monitoring

wells will be used to supplement the existing monitoring well network at the Site. The proposed

locations were selected to provide further evaluation of groundwater quality in potential source

areas and in areas that have not previously been monitored while also helping to refine the

understanding of Site groundwater flow. The proposed monitoring wells to be installed during

Phase I are shown on Figures 3 through 8 and are summarized on Table 1. The proposed

locations may be modified based upon the results of the geophysical survey activities as well as

the findings from the initial phases of the drilling program.

The majority of the proposed Phase I monitoring wells will be installed immediately below the

groundwater table. Screen zones in the water table wells will consist of 10 feet of screen.

If field observations suggest the well should be installed to bridge the water table due to the

potential presence of light non-aqueous phase liquids (LNAPL), then the well will be installed

with 15 feet of screen, including 5 feet above and 10 feet below the water table.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

ED 002345B 00009298-00028

In addition to the water table wells, deep monitoring wells are proposed to evaluate the vertical extent of COPCs in groundwater and to evaluate groundwater flow within deeper hydrogeologic units. Double-cased well drilling and/or other sonic drilling procedures will be used to hydraulically isolate monitoring wells screened with the deeper glacial aquifer(s) from the overlying groundwater system; thereby minimizing any potential for cross contamination. Procedures for installation of double-cased wells are provided in SOP 10.3 discussed in Section 5.1. Additional details regarding well construction will be included in the SAP Addendum.

The deep borings will be advanced until one of the three following criteria are met 1) the top of bedrock is encountered 2) a maximum depth of 300 feet below land surface is reached without encountering bedrock or 3) a shallower depth, at the discretion of the field geologist in consultation with the management team, if a deep hydrogeologic unit is encountered beneath a significant sequence of low permeability material. While drilling deep monitoring wells, undisturbed core samples will be collected for geotechnical analysis within the major water bearing units and low permeability units including grain size, bulk density, and hydraulic conductivity. The screened intervals of the deep wells will be determined by the RI field manager and the on-Site geologist/scientist/engineer performing oversight of the drilling activities based on results of geophysical surveying and field observations made during drilling. Monitoring wells will be constructed of 2-inch diameter Schedule 40 polyvinyl chloride (PVC) casing and 2-inch diameter, 20-slot (0.020 inches) PVC screen flush-threaded onto the PVC casing. Surface completion of each well will consist of a protective stick-up enclosure and a locking J-plug and an exterior lockable metal cover. The location of each monitoring well will be logged with GPS technology with sub-meter accuracy. The locations of the monitoring wells will also be surveyed for elevations.

Newly-constructed monitoring wells will be developed and allowed a minimum of one-week to equilibrate with the surrounding formation. The development will be completed using a surge block and submersible pump. The surge block will be used inside the well to flush fine sediments from the sand filter. After the well is surged, a submersible pump will be lowered into the well and groundwater will be withdrawn. Temperature, pH, specific conductance and turbidity readings will be monitored and pumping will proceed until the discharge water meets a

ROUX ASSOCIATES, INC.

Page [PAGE]

field turbidity value to 10 formazin nephelometric units/nephelometric turbidity units (FNU/NTU) or less or until the field turbidity does not improve for a period of two hours during active development.

4.8 Groundwater Gauging and Sampling

Groundwater levels will be measured across the monitoring well network on a quarterly basis for a period of one year following installation of all Phase 1 wells to evaluate Site-wide groundwater elevations and groundwater flow. Groundwater levels will be collected with an electronic water-level meter capable of measuring fluid elevation with an accuracy of 0.01 ft. When conducting comprehensive gauging rounds, all groundwater level measurements will be collected on the same day to provide a snapshot of the Site-wide conditions. At least six monitoring wells will be fitted with pressure transducers to document the seasonal fluctuations of groundwater levels. The pressure transducers will collect automated measurements every 30 minutes.

Groundwater samples will be collected from all newly-constructed monitoring wells and all existing Site monitoring wells that are deemed accessible and in good condition during Site reconnaissance. The feasibility of sampling the production wells, and whether such sampling will produce representative groundwater data, will be evaluated during Site reconnaissance. Groundwater samples will be collected on a quarterly basis for a period of one year following installation of all Phase 1 wells to characterize groundwater quality beneath the Site during varying seasonal conditions. Existing monitoring wells with dedicated sampling pumps will continue to be sampled with the dedicated pumps to maintain comparability with previous sampling results. Other groundwater samples will be collected using the methods described in the USEPA guidance document titled "Ground Water Sampling Procedure, Low Stress (Low Flow) Purging and Sampling" (USEPA, 2010). During purging, a water quality meter will be used to monitor water quality indicator parameters such as pH, conductivity, dissolved oxygen (DO), oxygen reduction potential (ORP), temperature, and turbidity. The field parameters will be recorded on monitoring well sampling data forms and submitted with the final RI summary report.

During each groundwater sampling event, groundwater samples will be analyzed for the

following parameters:

Dissolved TAL metals via USEPA Methods 200.7 / 200.8 / 245.2 / 6010C / 6020A /

7470A;

Total cyanide via USEPA Method 335.4; and

• General chemistry including Fluoride via USEPA method 300, alkalinity via method

SM2320B, and hardness via method 2340B;

Nutrients including Chloride and Sulfate via USEPA method 300.0, Nitrate and Nitrite as

N via USEPA method 353.2, ammonia nitrogen via USEPA method 350.1/350.3, and

orthophosphate as P via USEPA method 365.1; and

Total dissolved solids (TDS) and total suspended solids (TSS) via methods SM 2540C/D.

The initial groundwater samples collected adjacent to potential source areas will also be analyzed

for the following additional parameters:

TCL VOCs via USEPA Method 8260; and

TCL SVOCs via USEPA Method 8270.

All groundwater samples submitted for analysis of dissolved metals will be field filtered using a

standard 0.45 micron filter.

PCBs or pesticides in groundwater samples will not be analyzed for unless deemed warranted

based upon their detection in source area soil samples or other locations. Similarly, unless

warranted based upon the detection of VOCs or SVOCs in source area groundwater samples, the

downgradient groundwater samples will not be analyzed for these parameters.

4.9 Surface Water and Sediment Sampling

Surface water samples will be collected from surface water bodies present at the Site to evaluate

surface water quality. Samples will be collected from within RI Areas, if water is present in the

feature, including:

North-East Percolation Pond

North-West Percolation Pond

South Percolation Ponds

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

Seep

Cedar Creek

Cedar Creek Reservoir Overflow Drainage

Flathead River

The proposed surface water sample locations are shown on Figures 3 through 8 and summarized in Table 1. Samples will be collected by taking a grab sample directly from the water body using the sample collection container for each analysis. The location of each sample will be logged with GPS technology with sub-meter accuracy. Surface water samples will be collected on a quarterly basis for one year to evaluate seasonal variations in water quality.

As part of sample collection activities within the surface water features, surface water will be field analyzed with a water quality meter to evaluate water quality parameters including temperature, conductivity, pH, DO, and ORP. The water quality meter will be placed directly in the surface water feature and will be monitored until stable readings are observed. The readings will be recorded on a field datasheet and included as part of the RI Summary Report.

All surface water samples will be analyzed for the following parameters:

Total recoverable TAL metals via USEPA Methods 200.2 / 200.7 / 200.8 / 245.2 / 6010C / 6020A / 7470A;

Total cyanide via USEPA Method 335.4;

• General chemistry including Fluoride via USEPA method 300, alkalinity via method SM2320B, and hardness via method 2340B.

• Nutrients including Chloride and Sulfate via USEPA method 300.0, Nitrate and Nitrite as N via USEPA method 353.2, ammonia nitrogen via USEPA method 350.1/350.3, and orthophosphate as P via USEPA method 365.1; and

Total dissolved solids (TDS) and total suspended solids (TSS) via methods SM 2540C/D.

The initial surface water samples collected within the percolation ponds will also be analyzed for the following additional parameters:

• TCL VOCs via USEPA Method 8260;

TCL SVOCs via USEPA Method 8270;

TCL PCBs via USEPA Method SW8082; and

• TCL Pesticides via USEPA Method 8081.

During each surface water sampling event, the discharge of Cedar Creek and Cedar Creek Drainage Overflow will be measured utilizing a mechanical current-meter method in accordance with Roux SOP 6.7. The stream channel cross section will be divided into numerous vertical subsections. In each subsection, the area will be obtained by measuring the width and depth of the subsection, and the water velocity will be determined using a current flown meter. The discharge in each subsection will be computed by multiplying the subsection area by the measured velocity and the total discharge will be computed by summing the discharge of each subsection.

A temporary staff gauge will be installed within the Flathead River to enable measurement of river level conditions immediately adjacent to the Site. For the Flathead River, the instantaneous discharge measurement from USGS Station 12363000, located down river of the Site, will be recorded. The temporary staff gage will be surveyed and correlated to the USGS station 12363000. River levels measured at the staff gauge will be used in conjunction with measured groundwater elevations to evaluate groundwater / surface water interactions.

Sediment samples will be collected from the same locations as surface water samples. Seasonal conditions and river stage will be taken into account when collecting sediment samples. It is anticipated the sediment sampling activities will be performed in spring conditions when river stage is at a low level and such that the Flathead River is most likely acting as a gaining stream. Sediment will be collected by grab sampling sediment immediately beneath the subsurface and placing in sampling jars for laboratory analysis. Gravel and larger sized grains will be removed from the sample by utilizing a size 10 sieve prior to packaging and shipment for laboratory analysis. The proposed sediment samples will be analyzed with the same analytical methods as soils described in Section 4.4.1 including grain size analysis and total organic carbon. The proposed locations are shown on Figures 3 through 8 and are summarized in Table 1.

ROUX ASSOCIATES, INC.

Page [PAGE]

4.10 Drywell Sampling

Dry wells and drainage structures associated with the former plant operations are shown on

Plate 2. All accessible drains and basins will be inspected visually for potential impacts

(staining, odors, etc.). Descriptions of observations will be noted in the field notebook.

A sediment sample will be collected from each feature where feasible utilizing hand tools.

Sediment will be sent for laboratory analyses and analyzed for the same analytical methods as

soils described in Section 4.4.1.

A soil boring will be drilled at the location of Drywell 31, which based on historical Site

drawings was potentially used as a discharge location for chemical wastes generated in the Lab

Building. In addition, at least three soil borings will be completed to evaluate subsurface soils

beneath additional dry well locations. The locations will be selected following evaluation of

sediment screening and laboratory data.

4.11 Fate and Transport Evaluation.

As described in the RI/FS Work Plan Section 5.7, fate and transport evaluation will start during

Phase I and be continued during Phase II During the Phase I Site Characterization, analytical

data and hydrogeologic data will be collected to facilitate fate and transport evaluation. Field

data recommended for chemical fate and transport modeling is described in Table 3 of the

MDEQ guidance document titled "Technical Guidance General Field Data Needs for Fate and

Transport Modeling" (MDEQ, 2008).

As described in Section 5.3.2, soil data to be collected in Phase I relevant to fate and transport

evaluation and geotechnical analysis includes total organic carbon, grain size, bulk density and

moisture content analysis. As described in Sections 5.6.2 and 5.6.3, groundwater and surface

water data relevant to fate and transport evaluation include field parameters such as pH,

dissolved oxygen, temperature, and ORP, and analytical parameters listed in the nutrient and

metal parameter list.

A description of the fate and transport evaluation to be conducted during the Phase I Site

Characterization is described in Section 5.7 of the RI/FS Work Plan.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

ED_002345B_00009298-00034

5.0 FIELD SAMPLING PROCEDURES

This section discusses the Standard Operating Procedures (SOPs) and sample designation procedures that will guide the Phase I field activities.

5.1 Standard Operating Procedures

Roux Associates has developed a set of SOPs that are applicable for the proposed Phase I field sampling and data collection program. The SOPs were developed following USEPA and other applicable standard protocols. A list of relevant SOPs is provided below and copies of the SOPs are provided in Appendix A.

_	provided i	пдр	pendix A.
	SOP 3.1		Collection of Quality Control Samples for Water-Quality Data
	SOP 3.2	_	Field Record Keeping and Quality Assurance/Quality Control
	SOP 3.3		Sample Handling
	SOP 4.2	_	Measuring Water Levels Using an Electronic Sounding Device
	SOP 4.3	_	Purging a Well
	SOP 4.4		Sampling Ground-Water Monitoring Wells for Dissolved Constituents
	SOP 4.5		Surface-Water Sampling
	SOP 4.6	-	Filtration of Ground-Water and Surface-Water Samples for Dissolved Metals Analysis
	SOP 4.7	_	Measuring the Thickness of Separate-Phase Organic Liquids
	SOP 5.1		Collection of Soil Samples for Laboratory Analysis
	SOP 5.2	-	Collecting Stream-Bed, Pond, and Lagoon Sediment Samples
	SOP 5.4	_	Screening Soil Samples for Volatile Organic Vapors Using a Portable Photoionization Detector
	SOP 5.5		Soil Classification and Logging Procedures
	SOP 5.12	enemen.	Incremental Soil Sampling
	SOP 6.4	_	Measuring Water Quality Parameters
	SOP 6.5		Photo Documentation
	SOP 6.6		Collection of GPS Information
	SOP 6.7	_	Measuring Stream Discharge
	SOP 9.1		Decontamination of Field Equipment

SOP 10.3 – Soil Boring and/or Monitoring or Observation Well Drilling, Formation Sampling and Borehole Abandonment in Unconsolidated Formations

5.2 Sample Designation Procedures

All screening locations and analytical samples, including samples collected for QA/QC purposes, will be given a unique Site-specific sample identification number. The sample identification number will be used to track field-screening data and laboratory analytical results in the project database, as well as for presentation of the data in memoranda and reports. During the investigation, the sample numbers will be recorded in the field logbook and field datasheets, on the sample jars, and on the COC paperwork.

The Site-specific format will include the following structure:

1) Project Identification Code

All samples collected during the RI will be labeled as "CF", to represent Columbia Falls Aluminum Company.

2) Sampling Location Type

All samples will include an alpha identification code to identify the type of sample location:

- SB = Soil boring
- MW = Monitoring Well
- SWP = Surface Water Point
- SDP = Sediment Sampling Point
- DS = Drainage Structure
- SGP = Soil Gas Point
- SGS = Soil Gas Screening
- WC = Waste Characterization
- ISS = Operational Area Incremental Soil Sample

3) Sample Location Number

Each unique sample location will receive a unique numerical ID. Numerical IDs will start with "001" for each sample location type. For clustered monitoring wells (i.e., locations where water table and deeper screened monitoring wells are present) the deeper screened well will receive the letter "a" after the sample location number. Existing monitoring wells will retain their historically used identification.

4) Sample Media Type

All samples will include an alpha identification code to identify the type of sample media being collected:

- \bullet SO = Soil
- GW = Groundwater
- SW = Surface water
- SD = Sediment
- SG = Soil Gas
- PW Sediment Porewater
- WCS = Waste Characterization Solids
- WCL = Waste Characterization Liquids

5) Sample Interval

Multiple samples may be collected within the same borehole location for vertical delineation purposes. If multiple samples are collected, the sample identification will include the depth interval in feet below land surface from which the unique sample was collected.

6) QA/QC Samples

For samples collected for quality assurance / quality control purposes, the following alpha identification codes will be added to the sample ID:

- MS = Matrix Spike
- MSD = Matrix Spike Duplicate
- FB = Field Blank
- EB = Equipment Blank
- TB = Trip Blank
- DUP = Field Duplicate

Trip blanks and field duplicates will also be given unique identifiers indicating the type of sample and the sample date, but the analytical laboratory will be kept "blind" as to the location of field duplicate pairs to avoid introducing any bias to the analytical process.

The proposed samples and sample designations are provided on Table 1. Below are example sample designations for various types of hypothetical samples:

An example designation for a soil sample collected from 10-12 ft-bls at soil boring location 001:

CFSB-001-SO-10-12

An example designation for a groundwater sample collected from monitoring well 001:

CFMW-001-GW

PART 2 - COLUMBIA FALLS ALUMINUM COMPANY PHASE 1 SITE CHARACTERIZATION QUALITY ASSURANCE PROJECT PLAN

Prepared by Roux Associates November 2015 - Revision #0

Andrew Baris Vice President / Principal Hydrogeologist RI/FS Project Manager	Date	
Michael Ritorto Senior Hydrogeologist RI Manager	Date	
Wai Kwan, Ph.D., P.E. Senior Engineer/ Quality Assurance Manager	Date	

6.0 GROUP A – PROJECT MANAGEMENT

This element group, comprising nine elements, addresses project administrative functions and project concerns, goals, and approaches to be followed. The first element (A1) is the title and approval sheet provided above. The second element (A2) is the table of contents provided at the beginning of the SAP. The remaining items included in this element are addressed below.

6.1 Element A3 – Distribution List

This SAP will be distributed to the following organizations/key project personnel associated with the RI/FS activities.

Organization	Individual	Title	Copies
USEPA	Mike Cirian	EPA Project Manager	3 hardcopies and 1 electronic
Montana DEQ	Keith LargeLisa DeWitt	DEQ State Project Officer	1 hardcopy and 1 electronic
Glencore	John Stroiazzo	Glencore Project Manager	Electronic Only
CFAC	Steve Wright	Project Coordinator	Electronic Only
Roux Associates	Andrew Baris	RI/FS Project Manager	Electronic Only
	Michael Ritorto	RI Manager	Electronic Only
	Wai Kwan	QA Officer	Electronic Only
Primary Laboratory	TBD	Laboratory Project Manager	Electronic Only
Data Validation Firm	TBD	Data Validator	Electronic Only

6.2 Element A4 – Project/Task Organization

A project organization for the RI/FS is shown in Figure 11. The project responsibilities of the various key project team members relevant to the Phase I Site Characterization are discussed below.

RI/FS Project Manager – Andrew Baris, Principal Hydrogeologist, Roux Associates

The RI/FS Project Manager has the responsibility to oversee the overall implementation and completion of the RI/FS Scope of Work. The Project Manager will manage the technical and administrative aspects of the project and will function as Roux Associates primary contact with CFAC and the regulatory agencies (USEPA and MDEQ). The RI/FS Project Manager will direct the activities of the RI Field Manager, FS Manager, and other project staff, and will be supported

ROUX ASSOCIATES, INC.

Page [PAGE]

by the QA Officer in the implementation of this QAPP. The RI/FS Project Manager is

responsible for maintaining the official, approved QAPP.

RI Manager – Michael Ritorto, Senior Hydrogeologist, Roux Associates

The RI Manager will be the manager responsible for overseeing the implementation of the RI

Scope of Work. The RI Manager will ensure that data collection is carried out according to the

RI/FS Work Plan, and the various components of this SAP (FSP and QAPP). The RI Manager

will also oversee any subcontractors for any task where subcontractors may be required

(e.g., drilling, geophysical survey, etc.). The RI Manager will be responsible for communicating

updates on the status of the RI tasks to the RI/FS Project Manager.

FS Manager – Charlie McGuckin, P.E., Principal Engineer, Roux Associates

The FS Manager is responsible for developing the Scope of Work and overseeing the various

parts of the FS. The FS Manager will communicate with the RI/FS Project Manager and RI

Manager during the design of the RI to collect data that can be used to support the FS.

QA Officer - Wai Kwan, Ph.D., P.E., Senior Engineer, Roux Associates

The QA Officer is a person independent of technical/data analysis responsibilities on the project

that is designated to perform project QA/QC responsibilities. The QA Officer will assist as

needed in ensuring compliance with this QAPP and the sampling protocols in the FSP. The QA

Officer will be responsible for ensuring that sampling QA/QC audits are conducted to verify that

data being collected during the RI meets the DQOs. The QA Officer will also be responsible for

communicating with the analytical laboratory about potential QA/QC issues, if any, and

managing the data validation subcontractors. The QA Officer will submit reports to the RI/FS

Manager on QA activities and will verify that corrective measures are performed, if needed.

Project Health and Safety Officer - Joe Gentile, CIH, Corporate Health & Safety Officer, Roux

<u>Associates</u>

Health and safety will be a shared responsibility of all project personnel that visit the Site during

the RI/FS activities. The overall health and safety management during field activities will be

stewarded by the Project Health and Safety Officer. The Project Health and Safety Officer will

be responsible for ensuring that all project personnel, including subcontractors, adhere to the

requirements in the HASP.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

<u>Laboratory Project Manager - To be determined and specified in SAP Addendum</u>

The Laboratory Project Manager will be responsible for sample container preparation, sample custody in the laboratory, and completion of the required analysis through oversight of the laboratory staff. The Laboratory Project Manager will ensure that all QA/QC protocols specified in this QAPP are followed and that an acceptable laboratory report is prepared and submitted.

in this QAPP are followed and that an acceptable laboratory report is prepared and submitted.

The Laboratory Project Manager will report to Roux Associates' QA Officer and will also

communicate directly, as needed, with the Data Validation Manager.

Data Validation Manager - To be determined and specified in SAP Addendum

Roux Associates will coordinate data validation through a third-party Data Validator. The Data Validator will be responsible for validating analytical data received from the laboratory to ensure it meets the DQOs outlined in the QAPP and USEPA data validation guidelines. The Data Validator will provide a summary of the data validation results for inclusion in the

summary reports.

6.3 Element A5 - Problem Definition/Background

This element discusses the basis for the RI/FS activities at the CFAC Site, provides pertinent background information, and discusses the intended uses of the information to be developed

during implementation of the RI/FS.

6.3.1 Basis for the RI/FS

Roux Associates, Inc., has prepared a RI/FS Work Plan for the CFAC aluminum facility Site located in Columbia Falls, Flathead County, Montana (hereinafter, "the Site"). The Site was operated as a primary aluminum reduction facility (commonly referred to as an aluminum smelter) from 1955 until 2009. Aluminum production at the Site was suspended in 2009 due to a downturn in aluminum market conditions, and CFAC announced the permanent closure of the facility in March 2015. Since that time, CFAC has initiated decommissioning and demolition activities and has commissioned the performance of an RI/FS. The purpose of the RI/FS is to characterize the nature and extent of risks associated with environmental conditions at the Site and to evaluate potential remedial options to address those risks. More specifically, the RI/FS is designed to achieve the following objectives:

1. Identify contaminants of potential concern (COPCs) at the Site and their source(s);

ROUX ASSOCIATES, INC.

Page [PAGE]

2. Determine the nature and extent of Site-related COPCs in environmental media (soil, soil

gas, groundwater, surface water, sediment, and sediment porewater) at the Site;

3. Understand the fate and transport of COPCs in environmental media at the Site;

4. Identify any exposure pathways (considering both current and potential future land use);

5. Evaluate current and potential future human health and ecological risks posed by the

COPCs present at the Site; and

6. Conduct an evaluation of remedial alternatives for the Site, including treatability studies

where necessary.

6.3.2 Background Information

A Site description is provided in Section 2.1 of this SAP and a summary of Site operations is

provided in Section 2.2 of this SAP. A summary of the physical setting of the Site, including a

review of the Site topography, climate, geology, hydrogeology, and groundwater flow is

provided in Section 2.0 of the RI/FS Work Plan.

Previous investigations conducted at the Site indicate the presence of COPCs (i.e., primarily

cyanide and fluoride) in soil, groundwater, surface water and sediment. Additional data will

need to be collected as part of the RI/FS is to characterize the nature and extent of the COPCs

and further understand the potential environmental impacts, if any.

6.3.3 Intended Use of the Information

The information collected throughout the RI/FS will be utilized to achieve the objectives

described in Section 6.3.1. Section 3.6 of the RI/FS Work Plan provides preliminary

identification of potentially applicable or relevant and appropriate requirements (ARARs) and

any other guidance and criteria "to be considered" (TBC) for the Site during the RI/FS. In

addition, Section 6.5.5 discusses screening criteria to which the RI data will be compared for

identification and selection of COPCs.

6.4 Element A6 - Project/Task Description

This element provides a description of the activities planned in the Phase I Site Characterization

and a preliminary schedule of those tasks.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# 0

REVISION# <u>0</u> DATE: <u>Nov 2015</u>

6.4.1 Phase I Site Characterization

A RI/FS Site Characterization Program will be implemented in a phased approach, anticipated to

consist of at least two phases of field work. The Phase 1 Site Characterization will focus on

identification and characterization of source areas, and providing broad characterization of

conditions across the Site (including at downgradient areas near potential human and ecological

receptors).

The Phase I Site Characterization program has been designed to identify and/or confirm source

areas and associated COPCs, as well as provide a broad characterization of the hydrogeologic

conditions and the nature and extent of contamination across the Site. Based on the current

understanding of the Site conditions and CSM, the following objectives were established for

Phase I Site Characterization Program:

• Evaluate current conditions at all identified RI areas and Site features to determine which

RI areas and Site features require further investigation and/or quantitative evaluation in

the baseline risk assessment;

• Refine the list of COPCs that require further investigation at various RI areas and Site features so lists of laboratory analyses can be reduced during subsequent phases of

investigation;

• Refine the understanding of groundwater flow beneath the Site, particularly in the

vicinity of potential receptors;

• Develop a more detailed understanding of bedrock topography and the depths,

thicknesses and extents of the various hydrogeologic units, both of which may influence

groundwater flow and the distribution of COPCs in the subsurface;

• Begin to evaluate seasonal influences on groundwater/surface water interactions and

contaminant concentrations in groundwater and surface water;

• Develop data to support the preparation of the baseline risk assessment work plan; and

• Develop data to support identification and screening of remedial technologies as part of

the FS.

To meet the objectives outlined above, the Phase I RI program will include additional historical

data review, coordination of activities with the Site salvage/repurposing contractor (Calbag

Resources, LLC), pre-intrusive Site reconnaissance work, and source, operational and

background area investigation activities that will include soil gas, soil, groundwater, sediment,

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

and surface water sampling activities. Each of these tasks are described in greater detail in

Section 4.0.

6.4.2 Phase I Site Characterization Preliminary Schedule

A preliminary schedule for implementation of the major RI/FS activities is provided in Section

10.3 of the RI/FS Work Plan. A detailed project schedule outlining the anticipated timing and

duration of each Phase 1 Site Characterization field task will be provided to the EPA once the

RI/FS Work Plan and this SAP are approved and key subcontractors have been selected.

Management of the schedule will be an important focus throughout the duration of all RI/FS

activities. The schedule will be periodically reviewed and updated as the work progresses.

Many of the tasks in the RI/FS are independent; however, where possible, tasks will be

conducted concurrently to facilitate progress. The schedule may require modification throughout

the duration of the RI/FS based upon, among other factors, the regulatory review and approval

process, the availability of specialized subcontractors for certain aspects the work, adjustments to

the scope of work.

6.5 Element A7 – Quality Objectives and Criteria for Measurement Data

The RI/FS Site Characterization Scope of Work was developed in a manner consistent with

USEPA's "Guidance on Systematic Planning Using the Data Quality Objective Process"

(USEPA, 2006). The data quality objective (DQO) process is designed to clarify the objectives

of data collection and maximize efficiency during data collection. It consists of a multi-step,

iterative process that ensures that the type, quantity, and quality of environmental data used in

the decision making process are appropriate for its intended application. The following steps

were completed as part of the DQO process in general accordance with the USEPA guidance:

1. Define the problem

2. Identify the Goals / Decisions of the Study

3. Identify Information Inputs

4. Define the Study Boundaries

5. Develop the Analytical Approach

6. Specify Performance or Acceptance Criteria

ROUX ASSOCIATES, INC.

Page [PAGE]

7. Develop the Plan for Obtaining Data

The remainder of this element summarizes the step-by-step DQO process.

6.5.1 Step 1: Define the Problem

The RI/FS Work Plan provides the background information and relevant existing Site data to define the problem. In summary, previous investigations indicate that former aluminum smelter operations at the Site have resulted in releases to the environment which may pose a potential threat to human health and the environment. It is necessary to understand the types, extent and concentrations of the COPCs that have resulted from former Site operations for the adequate evaluation of current and future human health and ecological risks. It is also necessary to identify and understand any potential ongoing sources of these COPCs, if any, in order to make informed decisions regarding potential remediation approaches. Additionally, it will be important to understand the Site physical characteristics in order to evaluate contaminant migration pathways and potential remedial action alternatives.

6.5.2 Step 2: Identify the Goals / Decisions of the Study

The overall goal of the RI/FS is to determine:

• Where and to what extent remedial action is warranted to protect human and ecological receptors from contamination at the Site; and

• The remedial action alternative(s) that best satisfies the remedy selection criteria specified within the USEPA guidance and NCP.

In order achieve the above goals, the RI/FS will be conducted in a phased approach starting with the Phase 1 Site Characterization Program that is the focus of this SAP. The objectives of the Phase I Site Characterization are presented in Section 6.5.1, and formed the basis for development of the following decision questions and statements.

• Question 1: Do inorganic and organic chemical concentrations in Site surface soil, subsurface soil, soil gas, surface water, sediment, and groundwater exceed project screening levels?

Decision Statement: Determine if concentrations in Site surface soil, subsurface soil, soil gas, surface water, sediment, and groundwater are above screening levels and should be identified as COPCs.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

- Question 2: What is the extent of COPCs in Site surface soil, subsurface soil, soil gas, surface water, sediment, and groundwater?
 - Estimation Statement: Estimate the areal and vertical extent of COPC contamination in Site surface soil, subsurface soil, soil gas, surface water, sediment, and groundwater.
- Question 3: Do COPC concentrations in Site surface soil, subsurface soil, surface water, sediment, and groundwater exceed reference conditions?
 - Decision Statement: Determine if COPC concentrations in Site surface soil, subsurface soil, surface water, sediment—perewater, sediment, and groundwater are statistically greater than reference concentrations and are identified as Site-related COPCs.
- Question 4: Are there potential source areas present at the Site, beyond those already identified in the CSM (i.e., landfills, percolation ponds, plant drainage system including dry wells, drum storage area, underground storage tanks [USTs], aboveground storage tanks [ASTs], and waste and raw materials storage and handling areas)?
 - Decision Statement: Determine if additional source areas/Site features are present at the Site where COPCs potentially were released, based upon visual inspection of waste materials, soil piles, staining, stressed vegetation, etc., which will require additional characterization.
- Question 5: How are COPCs in Site surface soil, subsurface soil, and groundwater moving throughout the Site and is there the possible movement of COPCs y-off-Site?
 - Estimation Statement: Evaluate the fate and transport of COPCs throughout Site surface soil, subsurface soil, and groundwater. Parameters needed to inform this assessment include estimates of the depth to groundwater, identification of the aquifer types that are present (e.g., unconfined/confined, alluvial/bedrock), hydraulic gradients, as well as measurements of soil and water quality characteristics (e.g., total organic carbon, soil particle size and bulk density, pH, oxidation potential, alkalinity), the types and concentrations of COPCs across the Site and near downgradient Site boundaries, and the physiochemical properties of the COPCs present.
- Question 6: What are the subsurface characteristics and Site features that are important to understand prior to conducting drilling activities?
 - Estimation Statement: Evaluate the geophysical nature of the subsurface characteristics and features of the Site. Parameters needed to inform this assessment include estimates of the depth to bedrock, estimates of the depth to groundwater, identify changes in subsurface hydrogeological conditions, identify subsurface anomalies that may contribute to the delineation of source areas, etc.

6.5.3 Step 3: Identify Information Inputs

An evaluation of current Site conditions based upon existing data and an identification of the data needed to complete the RI/FS is provided in Sections 3.0 and 4.1 of the RI/FS Work Plan. While the historical investigation data was useful for development of the preliminary CSM and

ROUX ASSOCIATES, INC.

Page [PAGE]

scoping of the project, the available QA/QC documentation for the majority of the historical investigations is not sufficient to rely upon the data in future decision making. Therefore, the majority of the data for future decisions will be that which is collected during the RI/FS. This data will be supplemented by use of the validated data from the USEPA Site Reassessment sampling completed in 2013 and the ongoing quarterly residential well monitoring program (described in Section 2.8.14 and 2.8.15 respectively of the RI/FS Work Plan). In addition, the historical MPDES monitoring of historical groundwater quality trends and the ongoing MPDES Permit compliance monitoring will be used as appropriate.

A description of the data required to address each of the DQO questions and statements provided in Section 6.5.2 is summarized below.

Decision Statement: Determine if concentrations in Site surface soil, subsurface soil, soil
gas, surface water, sediment, and groundwater are above screening levels and should be
identified as COPCs.

In order make this determination, samples of the aforementioned media (with the exception of soil vapor) should be collected where present within, or adjacent to, each of the Site features that have been identified as potential source areas (i.e., landfills and percolation ponds) as well as from potential receptor locations (Site-wide soils, groundwater, surface water bodies). Groundwater samples should be collected adjacent to, and downgradient of, the potential source areas. Soil vapor does not require collection from all Site features, as VOCs have only been detected at trace concentrations to date. Passive soil vapor screening and groundwater data for VOCs can be used to evaluate the potential for soil vapor impacts and determine if additional soil vapor sampling is required.

The aforementioned samples should be analyzed for a comprehensive suite of analytical parameters to provide a broad screening for potential COPCs at the Site. The maximum concentrations detected should be utilized to make comparisons to conservative screening criteria for the protection of human and ecological receptors.

• Estimation Statement: Estimate the areal and vertical extent of COPC contamination in Site surface soil, subsurface soil, soil gas, surface water, sediment, and groundwater.

In order to estimate the areal and vertical extent of COPCs in the aforementioned media, samples will be collected at locations around, and downgradient of, the various potential source areas that have been identified at the Site. As part of the Phase 1 Site Characterization, the locations should provide a broad distribution of sampling locations across the Site and up to the downgradient Site boundary to assess if the COPCs are limited to within the Site boundary or potentially extend beyond the boundary. Within the groundwater system, installation and sampling of monitoring wells at deeper depths beneath the water table is required to characterize the vertical extent of COPCs.

ROUX ASSOCIATES, INC.

Page [PAGE]

• Decision Statement: Determine if COPC concentrations in Site surface soil, subsurface soil, surface water, sediment porewater, sediment, and groundwater are statistically greater than reference concentrations and are identified as Site-related COPCs.

Soil samples will be grouped into decision units following review of the Phase I data and during preparation of the Baseline Risk Assessment Work Plan. These decision units will likely correspond to the preliminary exposure areas described in Section 3.2 of the RI/FS Work Plan, which include the Main Plant Area, Landfill Area(s), Northern Percolation Ponds, Operational Soil Area and the Flathead River landside Area (including Southern Percolation Ponds and the Seep area).

With respect to surface and subsurface soil, a minimum of eight locations will be sampled within the western portion of the Site in areas that have had no evidence of prior industrial activity and that are greater than 500 ft from any known potential source area. The data from these locations will be used to calculate the mean concentration and 95 percent upper confidence limit (UCL) on the mean to establish potential background concentrations for comparison to soil samples collected at locations within and around the Site features the decision units. In addition, the background concentrations from this effort will also be evaluated in the context of the prior background soil sampling at the Site by Weston (2014) and throughout the State of Montana by Hydrometrics (2013).

With respect to groundwater, monitoring well W2-CFMW1 located within the Site boundary, but upgradient of all potential source areas, will be sampled to establish a background / reference concentration. With respect to surface water and sediment within Cedar Creek and the Cedar Overflow, two locations within the Site boundary but upstream of all potential source areas will be sampled to establish a background / reference concentration. Within the Flathead River, a background / reference location will selected during the field reconnaissance task of the Phase 1 Site Characterization. This location will be identified Phase 1 SAP Addendum described in Section 4.2. Since only one sample location will be used for the aforementioned background / reference stations, statistical analysis will not be performed. The data from these locations will compared directly to results of samples collected within and around the Site features.

 Decision Statement: Determine if additional source areas/Site features are present at the Site where COPCs potentially were released, based upon visual inspection of waste materials, soil piles, staining, stressed vegetation, etc., which will require additional characterization.

A ground level field reconnaissance will be conducted prior to the commencement of sampling activities, as described in Section 4.3. The findings of this reconnaissance, including identification of any additional potential source areas/Site features requiring characterization, as well as any additional sampling proposed based upon those findings, will be documented in the Phase 1 SAP addendum.

• Estimation Statement: Evaluate the fate and transport of COPCs throughout Site surface soil, subsurface soil, and groundwater. Parameters needed to inform this assessment include estimates of the depth to groundwater, identification of the aquifer types that are

present (e.g., unconfined/confined, alluvial/bedrock), hydraulic gradients, as well as measurements of soil and water quality characteristics (e.g., total organic carbon, soil particle size and bulk density, pH, oxidation potential, alkalinity), and the physiochemical properties of the COPCs present.

The hydrogeologic investigation has been designed to generate Site-specific data needed to evaluate the fate and transport of COPCs. The drilling program will include continuous coring to characterize formation materials at 43 new monitoring well locations throughout the Site. This will generate information regarding types and physical characteristics of the aquifers and confining units present, as well as collection of representative samples of aquifer materials and low permeability layers for geotechnical laboratory analysis. Monitoring wells will be installed to allow for measurement of depth to groundwater. These data used in conjunction with elevation surveys will be used to estimate hydraulic gradients. Published literature sources will be used to gather information regarding the physiochemical properties of COPCs that is required to evaluate fate and transport.

• Estimation Statement: Evaluate the geophysical nature of the subsurface characteristics and features of the Site. Parameters needed to inform this assessment include estimates of the depth to bedrock, estimates of the depth to groundwater, identify changes in subsurface hydrogeological conditions, identify subsurface anomalies that may contribute to the delineation of source areas, etc.

The existing Site data has been evaluated to provide an initial understanding of subsurface conditions. Prior to initiating the drilling program, this initial understanding will be supplemented by conducting a geophysical survey in the vicinity of the Site landfills and along transects perpendicular to the strike of Teakettle Mountain as described in Section 4.4. In addition, Site topography and existing monitoring wells will be used to estimate the anticipated depth to groundwater and the types of subsurface materials expected to be present at each drilling location.

6.5.4 Step 4: Define the Study Boundaries

This section describes the spatial and temporal bounds of the RI/FS.

Spatial Bounds

As described in Section 2.1 and shown on Figure 1, the property owned by the Columbia Falls Aluminum Company is approximately 3,196 acres. However, the historic footprint of operations and a significant peripheral area consists of approximately 1,340 acres of land bounded by Cedar Creek Reservoir to the north, Teakettle Mountain to the east, Flathead River to the south, and Cedar Creek to the west. Therefore, the Site and horizontal extent of the RI study area is defined as shown on Figure 2, including the 1,340 acres described above. The RI study area will be expanded if required to define the nature and extent of contamination at the Site.

ROUX ASSOCIATES, INC.

Page [PAGE]

Published literature indicates that the bedrock surface defines the base of the regional groundwater flow system at the CFAC Site (Konizeski *et al*, 1968). Thus, bedrock surface will represent the maximum vertical extent of the RI Study Area beneath the Site. The goal of the vertical investigation will be to refine the hydrogeologic model of the Site including understanding deep regional groundwater flow and identifying potential contaminant pathways to receptors. The vertical extent may vary across the Site area depending on the vicinity to Site features including the Flathead River.

Background / reference sampling locations for soil, groundwater, surface water and sediment are described in Section 6.5.3. The locations have been selected such that Site-related impacts are not expected to occur in the reference locations. Eight background / reference locations for soil sampling have been preliminary identified in the western portion of the Site in an area where there has been no evidence of Site-related industrial activity. During the Site reconnaissance task, these locations will be inspected to document the soil types present and determine if they are sufficiently similar to other Site soils for use as reference locations. The proposed background locations for surface water / sediment in Cedar Creek and the background monitoring well location for groundwater are in the northern area of the Site, upstream / upgradient of any Site-related activities. A background / reference sampling location in the Flathead River will be identified during the Site reconnaissance task.

Temporal Bounds

The potential release and potential migration of COPCs from source areas may vary depending on seasonal influences on groundwater flow. Groundwater in the region is typically recharged from the surface water sources within the watershed including numerous reservoirs, ponds, streams and lakes and additionally through infiltration of precipitation. During spring, the melting of winter snow and increased seasonal precipitation causes a high river stage in the Flathead River. This results in the Flathead River recharging groundwater and acting as a losing stream. In contrast, in the late summer, the dry weather results in a decrease in river stage so that the Flathead River *becomes* a gaining stream (Konizeski *et al.*, 1968).

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

Since most stormwater drainage is directed to the various percolation ponds, the release and potential migration of COPCs from these ponds may be correlated to both individual precipitation events as well as seasonal variation.

As a result of the seasonal and shorter term influences, multiple rounds of water level measurements (including use of water level data logger in select wells) will be conducted. Groundwater and surface water will be conducted on a quarterly basis for one year (four rounds of sampling) to characterize the seasonal variation in water quality. One sediment sampling event will be conducted as part of the Phase 2 Site Characterization. It is anticipated that this event will occur in the spring prior to significant mountain snowmelt, when the Flathead River is expected to be receiving water from the groundwater system.

6.5.5 Step 5: Develop the Analytical Approach

The activities described in Section 4 were developed to collect the types of data identified information inputs required to address the decision statement and estimation statements specified in Sections 6.5.2 and 6.5.3. The analytical approach to address each decision statement is described below.

- Decision Statement: Determine if concentrations in Site surface soil, subsurface soil, soil
 gas, surface water, sediment, and groundwater are above screening levels and should be
 identified as COPCs.
 - This determination will be made by comparison of maximum detected concentration of each potential COPC to human health and ecological screening levels for each media type, within each potential exposure area. For the purposes of identifying COPCs, the lowest value, across all sources, will be selected as the screening level. The screening level sources to be utilized are described in Section 6.1 and 6.2 of the RI/FS Work Plan.
- Decision Statement: Determine if COPC concentrations in Site surface soil, subsurface soil, surface water, sediment porewater, sediment, and groundwater are statistically greater than reference concentrations and are identified as Site-related COPCs.
 - With respect to surface and subsurface soil, a minimum of eight locations will be sampled within the western portion of the Site in areas that have had no evidence of prior industrial activity and that are greater than 500 ft from any known potential source area. The data from these locations will be used to calculate the mean concentration and the 95 percent upper confidence limit (UCL) on the mean to establish background concentrations for comparison to the maximum concentrations detected in soil samples collected at locations within and around the Site features. COPCs with maximum concentrations in soil exceeding the 95 percent UCL on the mean will be considered to be Site-related.

ROUX ASSOCIATES, INC.

Page [PAGE]

As described in Section 6.5.3, groundwater, surface water and sediment will not have a sufficient number of background / reference stations to permit a statistical analysis of background concentrations. The concentrations measured at the background / reference stations will be compared directly to the maximum concentrations of COPCs measured at the Site to make an initial assessment of whether the COPCs appear to be Site-related and evaluate if additional background sampling is warranted.

• Decision Statement: Determine if additional source areas/Site features are present at the Site where COPCs potentially were released, based upon visual inspection of waste materials, soil piles, staining, stressed vegetation, etc., which will require additional characterization.

A ground level field reconnaissance will be conducted prior to the commencement of sampling activities, as described in Section 4.3. The findings of this reconnaissance, including identification of any additional potential source areas/Site features requiring characterization, as well as any additional sampling proposed based upon those findings, will be documented in the Phase 1 SAP addendum.

6.5.6 Step 6: Specify Performance or Acceptance Criteria

Performance or Acceptance Criteria is addressed by the QA/QC aspects of the project as well as by an assessment of potential decision error and uncertainty evaluation.

6.5.6.1 Quality Assurance / Quality Control

Quality Assurance and quality control (QA/QC) measures will implemented throughout the course of the Phase 1 Site Characterization as detailed within the QAPP portion of this SAP. These measures will minimize variability, mitigate the potential for false positive and/or false negative error, and increase the accuracy and defensibility of collected data. These measures include, but are not limited to, the following:

- Ensuring that that project personnel have the proper qualifications and training (Section 6.6);
- Establishing a process for management of project documents, data and records (Section 6.7);
- Requirements for testing, inspection, maintenance and calibration of field and laboratory instrumentation (Section 7.6 and 7.7)
- Collection and analysis of field QC samples (Section 7.5.1);
- Analysis of laboratory QC samples (Section 7.5.2);
- Assessment and oversight (Section 8.0)

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

The analytical results of sampling activities will be evaluated with respect the following data

quality indicators: precision, accuracy, representativeness, completeness, sensitivity and

The field and laboratory QC samples that will analyzed, including their

frequency of collection/analysis and associated acceptance criteria (where applicable), are

summarized in Tables 2 and 3.

The aforementioned data quality indicators are discussed in detail in the remainder of this

section. Compliance with these criteria will be evaluated by the laboratory in accordance with

laboratory SOPs and quality assurance procedures and any non-conformity identified shall be

addressed in the lab reports. These criteria will also be evaluated during data verification and

validation processes.

6.5.6.2 Precision

Precision is defined as a measure of the reproducibility of individual measurements under a

given set of conditions. Field precision is assessed through the collection and measurement of

field duplicates. The variability between field duplicates reflects the combined variation in

concentration between nearby samples and the variation due to measurement error.

Precision will be evaluated in terms of relative percent difference (RPD) between two replicate

samples. RPD can be calculated using the following equation:

RPD = $[(C1-C2)/((C1+C2)/2)] \times 100$

When: C1 = The larger of the two concentrations.

C2 = The smaller of the two concentrations.

Duplicate soil samples are typically expected to be more variable than results from duplicate

water samples due to the physical and chemical heterogeneity of the soil matrix. As a result, a

RPD of 50% was selected for soil and sediment field duplicate samples and a RPD of 30% for

groundwater and surface water field duplicates to be used as advisory limits for analytes detected

in both the original sample and its field duplicate. RPDs greater than these limits will be noted

during the data validation process. The objectives for RPDs between the original samples and

their field duplicates are shown in Table 2.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# 0 DATE: Nov 2015

6.5.6.3 Accuracy

Accuracy is a measure of the overall agreement of a measurement to a known value, which

includes a combination of random error (precision) and systematic error (bias) components of

both sampling and analytical operations. Accuracy in the field is assessed through the use of trip

blanks and equipment blanks and through the adherence to all sample handling, preservation, and

holding time requirements. The objective for trip blanks and equipment blanks is that no target

compounds are present above the reporting limits (RLs).

Laboratory accuracy will be evaluated through the analysis of laboratory method blanks, and

spiked samples/compounds such as matrix spike and matrix spike duplicates (MS/MSDs),

laboratory control samples (LCSs), and surrogate compounds. Method blanks should not contain

any target compounds above the RLs which are quantitation limits based on the low point of

calibration. For spiked samples/compounds, the accuracy objectives, as measured by percent

recoveries (%R) are the control limits provided in Table 3.

6.5.6.4 Sensitivity

Sensitivity is the ability of a laboratory instrument or measurement technique to detect an analyte

at certain levels of interest. Sensitivity of the analytical measurement techniques is demonstrated

by laboratory method detection limits (MDLs) and Practical Quantification Limits (PQLs).

MDLs represent the lowest reportable concentration of an individual compound that meets the

analytical method qualitative identification criteria. PQLs refer to a minimum concentration of

an analyte that can be measured within specified limits of precision and accuracy; they are

generally 5-10 times the detection limit. MDLs and PQL are based on laboratory performance

relative to established calibration standards. Compounds detected at concentrations below the PQL

are qualified as "J", estimated value.

In order to evaluate the sampling results relative to analytical approach outlined in Section 6.5.5,

PQLs will be at or below the most conservative human health or eco-toxicity based benchmark

value, to the extent feasible. These values will be specified in Tables 7 through 10, and will be

utilized to establish sensitivity requirements for the selected analytical laboratory(s).

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

Monitoring of instrument sensitivity is performed through the analysis of reagent blanks, near

detection limit standards, and response factors. Documentation of laboratory instrument

sensitivity can be provided by the laboratory upon request. Sample matrix cleanup (in

laboratory) must occur when chemical interferences may be causing elevated reporting limits or

inadequate contaminant identification or quantitation.

6.5.6.5 Completeness

Data are considered complete when a prescribed percentage of the total intended measurements

and samples are obtained. Analytical completeness is defined as the percentage of valid

analytical results requested. Field completeness is a measure of the amount of valid

measurement data collected for the project. The percent completeness can be calculated by the

following equation:

Completeness (percent) = (Valid Data Obtained) X 100 (Total Data Planned)

The target completeness objective for field measurements collected for this sampling program is

95 percent or more. The target completeness objective for laboratory analysis during the RI is a

minimum of 90 percent of the planned collection of individual samples.

6.5.6.6 Representativeness

Representativeness is a qualitative parameter, which is dependent upon the proper design of the

sampling program and proper laboratory protocol. Representativeness expresses the degree to

which data accurately and precisely represents a characteristic of a population, parameter

variations at a sampling point, a process condition, or an environmental condition.

Representativeness of field measurements is dependent upon the proper design of the sampling

The Phase I RI sampling activities were designed to provide data that are program.

representative of conditions at specific locations and times of sample collection.

Representativeness will be verified by ensuring that the FSP and SOPs are followed throughout

the RI activities.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

In evaluating representativeness, it is important to understand the extent to which bias is

incorporated by design into the sampling process. With respect to the Phase 1 source area

investigation activities, field reconnaissance will be conducted first, followed by geophysical

surveys and soil gas surveys. As described in Section 4.1, the findings from these activities will

be evaluated and used to refine source area sample locations such that they are biased towards

areas where COPCs are considered more likely to be present. Thus, the results from Phase I

sampling around source areas will likely be biased high relative to average conditions within the

source area-

6.5.6.7 Comparability

Comparability is a qualitative objective, which expresses the confidence with which one data set

can be compared with another. The objective for comparability is to ensure that results of

analyses can be compared with analyses produced by other laboratories and other projects.

The data from historical investigations was utilized in conducting the initial site evaluation

presented in the RI/FS Work Plan. However, the RI/FS is anticipated to generate data of

sufficient quantity and quality such that reliance upon data from the prior investigations

conducted in the 1980s and 1990s will not be necessary when conducting risk assessment and

feasibility study.

Comparison to some more recent data sets may be informative and beneficial when evaluating

sampling results and trends. The field sampling procedures and analytical methods proposed for

the Phase 1 Site Characterization program are very similar to those used during the USEPA 2014

Site Reassessment as well as for the ongoing quarterly monitoring of residential wells.

Therefore, the data collected from similar locations under similar conditions should be

comparable. In addition, Phase 1 Site Characterization analytical methods for cyanide and

fluoride are consistent with those used to monitor MPDES permit compliance. Therefore, seep,

surface water and/or groundwater samples collected from similar locations under similar

conditions should be comparable.

Comparability is dependent upon the proper design of the sampling program and will be satisfied

by ensuring that the protocols described in the FSP and QAPP are followed and that proper

ROUX ASSOCIATES, INC.

Page [PAGE]

sampling and analytical techniques are used. The sampling and analysis throughout the Phase 1 Site Characterization will be conducted in accordance with the SOPs and selected analytical methods. Therefore, these procedures and methods will provide comparable data.

6.5.6.8 Decision Error Limits and Uncertainty Evaluation

As described below in Section 6.5.7, the sampling plan for the Phase 1 SAP was developed based upon judgmental sampling design, which is one of the accepted methods described in USEPA guidance on sampling design (USEPA, 2002b). Quantitative analysis of decision error limits and uncertainty is not feasible when implementing a judgmental sampling program. However, as described within the sampling plan, the proposed sample locations are biased to be within and around known or suspected source areas, and at locations downgradient of these areas. The analytical approach calls for using the maximum concentrations detected in these samples for comparison to the most conservative screening criteria or background / reference samples. This approach is overall a very conservative approach that should minimize and minimizes the potential for a Type 1 decision error (i.e., an analyte would be dismissed as a COPC when it could be of potential risk).

6.5.7 Step 7: Develop the Plan for Obtaining Data

As described in Section 4.2, several different types of data gathering and sampling activities are required to achieve the project objectives. The locations and numbers of sampling points associated with each type of activity were typically selected based upon judgmental sample design. As described in USEPA guidance on sampling design (USEPA, 2002b), judgmental sampling design is appropriate when there is reliable historical and physical knowledge about the feature or condition under investigation; or, when the objective of the investigation is to screen an area(s) for the presence or absence of contamination at levels of concern, such as risk-based screening levels. Both of these conditions are generally applicable for the current phase of work. Specifically, there is knowledge about most Site features (i.e., locations and dimensions, historical use) and the goals of the Phase 1 Site Characterization program include use of risk-based screening levels to identify areas for further investigation and/or inclusion in subsequent risk assessment.

Although the sampling plan for known or suspected source areas is judgmental in design, it will

be conducted using a systematic phased approach. Field reconnaissance will be conducted first,

followed by geophysical surveys and soil gas surveys. The findings from these activities will be

evaluated and used to refine source area sample locations such that they are biased towards areas

where COPCs are considered more likely to be present.

Judgmental sampling design has also been used to develop the scope of work for investigation of

hydrogeologic and groundwater quality conditions at the Site. Per USEPA guidance,

judgmental design is appropriate considering the scale of the Site and lack of adequate

probabilistic investigation methods.

A stratified random sampling approach will be utilized as per USEPA guidance on sampling

design (USEPA, 2002b) and the Interstate Technology & Regulatory Council (ITRC)

Incremental Sampling Methodology (ITRC, 2012) to characterize soil quality conditions in the

surface soil and shallow subsurface soil (0 to 0.5 ft-bls and 0.5 to 2.0 ft-bls, respectively) within

large areas of the Site where there are no specific source areas identified, but aerial photographs

or Site knowledge suggests evidence of historical operations activity. As described in

Section 4.6.2, an incremental sampling methodology will be utilized in these areas to produce a

better estimate of average soil conditions within individual grid cells uniformly distributed across

the large area.

6.6 Element A8 – Special Training Requirements/Certifications

The RI Field Manager will ensure that all field team members have received project-specific

training with respect to the various field sampling tasks and equipment operation and are

knowledgeable in the applicable SOPs.

Prior to beginning field sampling activities, field planning meeting(s) will be conducted to

discuss and clarify the following:

Objectives and scope of the fieldwork

• Equipment and training needs

• Field operating procedures, schedules of events, and individual assignments

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

• Required quality control (QC) measures

• Health and safety requirements

It is the responsibility of each field team member to review and understand all applicable

governing documents associated with this sampling program, including the FSP, QAPP

and HASP.

All individuals involved in the collection, packaging, and shipment of samples must have OSHA

40-hour health and safety training, and respiratory protection training as required by 29 Code of

Federal Regulations (CFR) 1910.134. Individuals involved in investigations at the asbestos

landfills or other locations where asbestos is suspect must also have asbestos awareness training,

as required by 29 CFR 1910.1001. All training documentation will be stored in the project files.

It is the responsibility of the Health and Safety officer to ensure that all training documentation is

up-to-date and on-file for each field team member.

Subcontractors will be utilized throughout the RI activities to complete various tasks. These

tasks include sonic-drilling, geophysical surveying, land surveying, and asbestos

characterization. The subcontractors will be selected prior to the completion of Site

Reconnaissance and will be discussed in the SAP addendum. The subcontractors will be

required to hold licenses/certifications as applicable for their respective tasks.

All analytical laboratories participating in the analysis of samples for the Phase I Site

Characterization are subject to national, local, and project-specific certifications and

requirements. Each laboratory will meet Environmental Laboratory Accreditation standards as

defined by the USEPA. Copies of all proficiency examinations and certifications are maintained

by the laboratory coordinator within each laboratory. Each laboratory also maintains appropriate

certifications from the state and possibly other certifying bodies for methods and parameters that

may also be of interest to the project. These certifications require that each laboratory has all

applicable state licenses and employs only qualified personnel.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

6.7 Element A9 – Documentation and Records

The following sections provide an overview of the procedures and requirements for recordkeeping and reporting. Field logbooks and field datasheets will provide the means of recording the data collection activities during field activities. All field logbooks and data sheets will be scanned on a weekly basis to create a PDF files for electronic archiving with the central project file. An SOP for field recordkeeping is provided in the SAP. Some of the specific requirements with respect logbooks and field data are highlighted below. Additionally, reporting of data collected and responsibilities related to reporting are discussed below.

6.7.1 Field Logbooks

Field logbooks will be used to document field activities and observations. The field notes will be clear, with sufficient detail so that events can be reconstructed later if necessary. Field logbooks will document any field deviations from the RI/FS Work Plan and/or SAP, as well as the reasons for the changes. Requirements for logbook entries include the following:

- Separate field activity logbooks will be kept for each task.
- Logbooks will be bound, with consecutively numbered pages.
- Removal of any pages, even if illegible, is prohibited.
- Entries will be made legibly with black (or dark) waterproof ink.
- Unbiased, accurate language will be used.
- Entries will be made while activities are in progress or as soon afterward as possible (the date and time that the notation is made will be noted as well as the time of the observation itself).
- Each consecutive day's first entry will be begun on a new, blank page.
- The date and time, based on a 24-hour clock (e.g., 0900 a.m. for 9 a.m. and 2100 for 9 p.m.), will be recorded on each page.
- When field activity is complete, the logbook will be entered into the permanent project file.

In addition to the preceding requirements, the person recording the information will initial and date each page of the field logbook. If more than one individual makes entries on the same page, each recorder will initial and date each entry. Logbook corrections will be made by drawing a

ROUX ASSOCIATES, INC.

Page [PAGE]

single line through the original entry, allowing the original entry to be read. The corrected entry will be written next to the original entry. Corrections will be initialed and dated. Separate logbooks for each activity may be needed because several field activities may occur at once.

6.7.2 Field Datasheets

Field datasheets will be utilized when appropriate to achieve efficient and standardized recording of field measurements and observations. The type of field data sheet and the information recorded on it may vary by activity. At a minimum, field datasheets will be completed for each sample to document the unique sample identifier assigned, provide information on whether the sample is representative of a field sample or a field-based quality control sample (e.g., field blank, field duplicate), provide information regarding the sample media, sample date, sample location, sample GPS coordinates, and sampling team members for every sample. All datasheets must be entered into electronic format. Datasheets may also be used to document information such as habitat descriptions, sediment sample characteristics (e.g., color, texture, etc.), water level gauging data, surface water and groundwater sample field observations and measurements (e.g., pH, temperature, color, clarity, etc.). A reference date and activity will be entered into the logbook to refer to the field data sheets being generated. The field data sheets will be put into electronic format and become a permanent record within the project file. When field data sheet entries are entered in an electronic format, each sheet will be annotated to indicate who completed the data entry and when.

6.7.3 Data Storage

In addition to data collected during field activities as listed in sections 6.7.2 and 6.7.3, other data that will need to be maintained throughout the RI/FS will include laboratory analytical data, photographs, project correspondence (i.e., letters and emails), and deliverable reports. In general, all project documents will be maintained in electronic format and stored in a project specific folder designated on the Roux Associates network. All electronic files will be backed up in accordance with Roux Associates IT Policy.

All data generated by the laboratories will be requested in electronic data deliverable (EDD) format. The laboratory data will be imported into the project database and managed in accordance with the data management procedures outlined in Section 7.10 of this QAPP.

ROUX ASSOCIATES. INC.

Page [PAGE]

One copy of all final documents submitted by Roux to a client or regulatory agency is maintained in a central digital repository. Archiving of the digital repository occurs at a minimum daily. All other project files for completed projects will be retained for seven years from the date of completion of the project, unless a longer period is required by the client or EPA. Project completion refers to completion of all work at the Site, not the completion of individual phases or tasks.

6.7.4 Reporting

A list of project deliverables is provided in Section 9.0 of the RI/FS Work Plan. Reporting will be completed in hardcopy and electronic formats and submitted to the EPA and DEQ in accordance with the deliverable list outlined in Section 6.1. The RI/FS Project Manager will be responsible to ensure all project deliverables are completed on-time and submitted in accordance with the procedures outlined in Section 6.1.

7.0 GROUP B – DATA GENERATION AND ACQUISITION

This element group, comprising ten elements, addresses data generation and data acquisition and

management activities.

7.1 Element B1 – Sampling Process Design

The Phase I RI sampling design is summarized in Section 5.0 of the RI/FS Work Plan and

Section 4.0 of this SAP. All of the data planned to be collected in the Phase I Site

Characterization will be considered critical to the process, and no secondary data is currently

planned.

The Phase I Site Characterization is scheduled to begin in the 2nd Quarter of 2016. A general

schedule for completion of each field task associated with Phase I will be provided to the

USEPA Project Manager at least 30 days before the start of the field work activities. Because

the Site is owned by CFAC, it is not anticipated that any of the sampling sites will become

inaccessible during the field activities. However, if at any time the sampling locations described

in the Phase I Scope of Work become inaccessible, CFAC will communicate with the USEPA

Project Manager either orally or written within 24 hours.

7.2 Element B2 – Sampling Methods

Details regarding sampling procedures are presented in Section 5.1 of this SAP, including a

summary of the relevant SOPs that will be used to guide the Phase I sampling activities.

If problems arise or field conditions suggest a deviation from the SOPs is required, the RI

Manager should be contacted. A plan to adequately address the situation should be developed

and documented in the field notebook.

If problems occur related to sampling equipment malfunctions, the RI Manager should be

contacted. The RI Manager will be responsible for verifying that corrective actions are

completed, such as obtaining backup supplies and equipment to ensure that the field activities

will continue until completion. Any equipment malfunctions should be noted in the field

notebook with a description of the date, time and problem. When replacement equipment arrive

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

onsite, it should also be documented in the field notebook, including the source of the equipment

and serial number.

7.3 Element B3 – Sample Handling And Custody

This element describes the management approaches that will be implemented to ensure that field

samples retain their original physical form and chemical composition through collection to final

disposal. Management approaches discussed below include sample designation, handling, and

custody.

7.3.1 Sample Designation

All screening locations and analytical samples, including samples collected for QA/QC purposes,

will be given a unique Site-specific sample identification number. The Site-specific sample

designation is described in Section 5.2 of this SAP.

7.3.2 Sample Handling

The following sections summarize how sample custody will be managed during the course of

the RI/FS.

7.3.2.1 Sample Labels

Each sample container will be affixed with a waterproof, adhesive label. The sample labels will

contain the following information:

Project name;

Sample Date;

Sample time;

Sample identification;

Sampler's initials;

Requested analysis; and

Sample preservative.

Preprinted sample labels will typically be prepared prior to sampling tasks. Labels that are not

preprinted, and those portions of the label that must be completed in the field (i.e., date, time,

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

sampler's initials), will be completed using waterproof ink. The label will be covered with clear

mailing tape in an effort to prevent it from falling off and to prevent potential water damage

during transit.

7.3.2.2 Sample Shipping and Hold Times

Most analytical methods require that samples be kept at an approximate temperature of

four degrees Celsius (4°C). Samples requiring this type of preservation will be placed in coolers

directly after collection and packed with ice. A temperature blank should be included in each

sample cooler. Field personnel are responsible for the security and for maintaining the

temperature of the samples before they are transferred to the analytical laboratory.

Sample bottles will be packed snugly with packing material in an effort to protect the containers

from potential breakage during shipment. The samples, along with a completed chain of custody

(CoC), will be stored inside the coolers at the Site until they are sent to the laboratory for

analysis. All samples will either be shipped by overnight courier (e.g., Federal Express) or

transported by vehicle to the laboratory for analysis. All containers shipped by courier to the

laboratory will be sealed with a custody seal that has been signed and dated. Samples will be

shipped or transported with sufficient time to meet all analytical holding standards. Tables 4 and

5 list container types and sizes, preservation, and holding times for the various analyses to be

performed.

7.3.3 Sample Custody

The possession and proper transfer of samples and sample-related information must be

documented from the time the samples are collected until the analyses have been completed and

the data have been accepted. The objective of the sample custody system is to ensure that:

• Samples are uniquely identified and labeled;

• The correct samples are analyzed and are traceable to their records;

• Samples are protected from loss or damage;

• Alteration of samples (e.g., filtration, preservation) is documented;

A forensic record of sample integrity is established; and

• Client confidentiality is maintained.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

The CoC form establishes the documentation and control necessary to identify and trace a

sample from collection to final analysis. All field staff responsible for collecting and sending

samples to the laboratory will receive a copy of a blank CoC form following selection of the

laboratory. The following sections summarize how sample custody will be managed during the

course of RI.

7.3.3.1 Field Chain of Custody Procedures

The field sampler(s) is responsible for the care and custody of the samples until they are

transferred or properly dispatched. The field sampler(s) will complete the CoC form

immediately after collection in an effort to establish sample custody in the field before sample

shipment. The following information will be included on the CoC:

• Sample identification and sample container identification number, if applicable;

• Date and time the samples were collected;

• Matrix of the sample;

The number of containers for each sample;

Analysis requested and preservation codes;

• Name of sampler(s) and the person shipping the samples and documentation;

• Name, telephone number and email address of the RI Project Manager; and

• Signature of the sampler.

Any corrections to the CoC will be made by putting a single strike through the incorrect entry

and initialing and dating it. When the shipping container (i.e., cooler) is packed for shipping,

personnel relinquishing the container will sign the CoC. The CoC will accompany the samples

to the laboratory and a copy of the CoC will be retained by the RI Field Manager and placed in

the project file. The completed CoC will be supplied by the laboratory with the standard

data package.

The QA/QC Officer will be responsible for reviewing all sampling activities to verify whether

proper custody procedures were followed during the field work. Any deviations in the custody

procedures will be noted in the RI Summary Report.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

7.3.3.2 Transfer of Custody and Shipment Procedures

Samples will be sent to the laboratory for analysis with a signed CoC. When transferring the

possession of samples, the individuals relinquishing and receiving will sign, date, and note the

time on the CoC. This record documents transfer of custody of samples from the sampler to the

laboratory. The original CoC form will accompany the shipment, and a copy will be retained by

the field manager to be placed in the project files. Photocopies of the original CoC should be

made before shipment, if possible, in an effort to ensure that clean copies can be made later.

Shipping coolers will be locked and secured with tape and custody seals for shipment to the

laboratory. If the samples are sent by common carrier, a bill of lading (air bill) must be used.

Receipts of bills of lading will be retained in the project files. Commercial carriers are not

required to sign off on the custody form as long as the custody forms are sealed inside or on the

outside of the sample container and the custody seals remain intact.

7.3.3.3 Laboratory Chain of Custody Procedures

The Laboratory project manager will verify that CoC records are filled out upon receipt of the

samples and will note questions or observations concerning sample integrity, if any. The name

of the person receiving the samples and the date and time the samples were received by the

laboratory should be noted on the CoC.

The laboratory project manager will verify that sample-tracking records are maintained. These

records will follow each sample through all stages of laboratory processing. The sample tracking

records must show the date of sample extraction or preparation and the date of instrument

analysis. These records will be used, in part, in an effort to determine compliance with holding

time requirements. Laboratory custody procedures for sample receiving and log-in, sample

storage, tracking during sample preparation and analysis, and storage of data are described in the

Laboratory QAPP.

7.4 Element B4 – Analytical Methods

All field and laboratory analytical methods to be employed during implementation of the RI/FS

were chosen based on one or more of the following criteria:

• the ability to meet the DQOs for the project;

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

• the validity and reproducibility of the methods; and

• conformance of the methods to industry-standard or USEPA-published methods and

practices.

The remainder of this Section describes the field and laboratory methods selected for the Phase I

RI Site Characterization activities.

7.4.1 Field Analyses

Field instruments and equipment are those pieces of equipment used to gather or generate

environmental data. The primary field instrumentation that is expected to be used during the

RI includes:

• Multi-parameter meters to measure water quality parameters, including water

temperature, specific conductance, dissolved oxygen concentration, pH, ORP, and

turbidity;

Oil/water interface and water-level probes to measure fluid levels;

• Submersible groundwater pumps and/or bladder pumps for use during groundwater

sampling activities;

PIDs for air monitoring, soil gas screening and soil screening;

Methane meter for landfill soil gas screening;

Multi-gas meter for air monitoring; and

• Handheld GPS for geo-referencing sampling locations.

A summary of the field instrumentation that is expected to be used during the RI/FS is provided

in Table 6.

7.4.2 Laboratory Analyses

The selected analyses for the Phase I sampling activities are described for each media in

Section 4.0.

The laboratory's SOPs specify equipment, method-specific performance criteria, and corrective

actions for each method. A summary of methods for each media is also provided in Tables 7

through 10. These tables include the desired maximum PQL expected for each analyte that has

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

an established human health or eco-toxicity benchmark / criteria value. The expected MDLs and

PQLs that can be achieved by the laboratory will be provided following selection of the

laboratory. Any methods that cannot meet the desired quantitation limits, if any, will be

discussed in the SAP addendum.

7.5 Element B5 – Quality Control

Overall data usability is influenced by variability (error) introduced into and/or inherent with

both field (sampling) and laboratory (analytical) processes. QC checks are tools with which to

measure or estimate the overall effect of this variability on a sample collection effort. During

implementation of the RI/FS, a variety of QC checks will be performed by both field and

laboratory staff to assess compliance with project DQOs and the SOPs for the various analytical

methods. These QC checks are discussed below.

7.5.1 Field QC Checks

This section provides a description of field QC procedures. QC samples will be collected in the

field to estimate precision and accuracy of the analytical results and to examine the sources of

error introduced by the field practices. The results of the QC checks are used during data

validation in an effort to evaluate the precision, accuracy, sensitivity, and representativeness of

the overall sampling and analytical program. The following sections describe the QC checks that

will be applied to the RI and their definition and purpose. The frequencies of field QC samples

for the RI field activities are specified in Table 2.

7.5.1.1 Field Duplicates

A field duplicate is a field sample that is collected at the same place and time as an original field

sample. However, because of potential variation in field duplicate samples (even those from

similar locations, especially for media such as soil, surface water, sediment, etc.), it is not

appropriate to assume that field duplicate pairs must necessarily have the same concentration

values. Rather, field duplicates help to evaluate variability due to small-scale media

heterogeneity, along with analytical precision. During the RI, duplicate samples will be

collected at a minimum frequency of one per twenty samples and one per sample delivery group.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

7.5.1.2 Trip Blanks

Trip blanks are used to assess the potential for bias (inaccuracy) through the introduction of volatile contaminants into the sample or sample containers during transport, handling, and/or storage. Trip blanks determine if any cross-contamination between sample containers occurs from the proximity of sample containers to one another during transport or storage. Trip blanks consist of sample containers filled with analyte-free water that are preserved with hydrochloric acid (HCL) and prepared by the laboratory prior to the sampling event. The trip blanks are then transported to the field along with the containers used for sample collection and are kept with the samples throughout the sampling event, but are not exposed to the sampling process. Once sampling is complete, the trip blanks are then packaged for shipment with the other samples and sent for analysis. The trip blank sample containers are not opened before they reach the laboratory to be analyzed. There should be at least one trip blank included in each shipping container that contains samples for VOC analysis.

7.5.1.3 Equipment Blanks

Equipment blanks (also referred to as decontamination rinsate blanks) are samples that are obtained by running de-ionized water through decontaminated sampling equipment as a check that the decontamination procedure has been adequately carried out and that there is no cross contamination of samples occurring due to the equipment itself. Equipment blanks must be analyzed for the same parameters as the associated samples. One equipment blank will be taken per day as needed when reusable sampling equipment is utilized.

7.5.1.4 Temperature Blanks

Temperature blanks ensure that samples arrive to the laboratory at the correct preservation temperature. Temperature blanks typically consist of de-ionized water and will be included in each cooler when it is shipped to the laboratory. The laboratory sample custodian will record the temperature of the blank upon receipt of the samples.

7.5.1.5 Matrix Spikes and Matrix Spike Duplicates

Matrix Spike (MS) and Matrix Spike Duplicate (MSD) samples are designed to evaluate the effect of the sample matrix on analytical data, by measuring precision and accuracy from a known concentration of a target analyte that has been added to a particular sample matrix.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

MS/MSD samples are prepared by spiking environmental field samples with a standard solution

containing known concentrations of representative target analytes. Percent recovery of each of

the spiked compounds or analytes reflects the ability of the laboratory and method to accurately

determine the quantity of the analyte in that particular sample (i.e., is a measure of accuracy in

the specific sample matrix).

For the MSD samples, a second aliquot of the same field sample used for the MS is combined

with the same quantity of the spiking compounds and is processed in an identical manner. The

results for the MS/MSD pair provide a measure of the precision during laboratory analysis.

Additional sample volumes for MS/MSD QA/QC samples will be collected in the field at a

minimum frequency of one per twenty samples. MS and MSD samples will be identified on

the CoC for the analytical laboratory.

7.5.1.6 Field Blanks

A field blank is a sample of the same medium as field samples, but which does not contain any

contaminant. Field blanks are normally collected for air and water samples, but not for soil or

sediment. A field blank for surface water will be prepared by placing an appropriate volume

of analyte-free reagent water (e.g., ASTM Type II) into a sample collection container. Field

blanks must be analyzed for the same set of parameters as the surface water samples.

Field blanks will be collected at a rate of 1 field blank per 20 field samples or 1 per sample

batch, whichever is greater.

7.5.2 Laboratory QC Checks

The analytical laboratories have a QA/QC program in place to ensure the reliability and validity

of the analysis performed at the laboratory. All analytical procedures are documented in writing

in laboratory SOPs and each SOP includes the minimum requirements for the procedure.

The internal QA/QC checks differ slightly for each individual procedure.

Laboratory QC check samples serve as checks on the laboratory sampling and measurement

systems and assist in determining the data quality with regard to laboratory accuracy and

precision. The number and type of laboratory QC check samples varies with the intended

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

data use. Laboratory control samples fall into two basic categories: samples run through the

entire sample allocation, preparation, and analysis method (method or matrix controls) and

samples run through only the analysis method (analysis or instrument controls). In either case,

control samples are samples of known or certified concentration that are introduced at either the

pre-preparation or post-preparation step of the method and carried from that point on through the

rest of the method as a routine sample.

Control samples are used in an effort to define either method (preparation plus instrument) or

instrument accuracy. Method (preparation) performance check samples collectively measure the

entire laboratory analytical data generation process, from sample allocation in the laboratory

through the analysis and data reduction. Instrument (analysis) check samples measure the

laboratory performance from the point where analysis begins, generally excluding any

preparation/extraction effects, through the analysis and data reduction.

Laboratory analytical QC will be monitored through internal laboratory QC checks such as the

analysis of blanks, matrix spikes, matrix spike duplicates, surrogate spike, laboratory control

samples, and initial and continuing calibration checks. The frequency, acceptance criteria, and

corrective action for these laboratory QC checks per analysis will be in accordance with method

requirements and the individual laboratory QAPPs.

7.5.2.1 Method and Analytical Blanks

Method blanks are generated within the laboratory during the processing of the field samples.

These blanks are processed using the sample reagents and procedures at the same time as the

samples being analyzed. Contamination found in the method blank would indicate that similar

contamination found in associated samples may have been introduced in the laboratory, and not

actually be present in the samples.

Analytical blanks, such as initial calibration blanks and continuing calibration blanks are

required by inorganic test methods. These blanks are laboratory reagent-grade water and acid

solutions to match samples analyzed at the beginning, intervals during, and the end of an

analytical sequence in an effort to assess contamination and instrument drift. The initial

calibration blank is analyzed at the beginning of the analytical run following the calibration and

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

initial calibration verification. The continuing calibration blank is analyzed prior to sample

analyses, throughout the analytical run and at the end of the analytical sequence, or as stipulated

in each analytical method.

7.5.2.2 Surrogate Spikes

Surrogate spike analyses are used to determine target analyte recovery during sample preparation

and analysis. A surrogate spike is prepared by adding a known amount of surrogate compound

to an environmental sample before extraction. Surrogates are similar to matrix spikes and apply

only to organic parameters. The surrogate compound is chosen to exhibit an analytical response

similar to the response displayed by a target compound during sample analysis. The recovery of

these surrogates aids the analysts in determining matrix effects on recovery of compounds in

each sample and is a measure of accuracy. Surrogate spikes generally do not affect the routine

sample results because the surrogate compounds are isotopically labeled.

analyses will be conducted in accordance with the referenced method protocols. Acceptance

criteria and corrective action procedures for out-of-control surrogate spike results are listed in the

laboratory QAPPs.

7.5.2.3 Internal Standards

Internal Standards are compounds of known concentrations that are added in a constant amount

to samples, blanks, and calibration standards and are used to correct for the loss of analyte during

sample preparation. The internal standard is a compound that is very similar, but not identical to

the chemical species of interest in the samples, as the effects of sample preparation should,

relative to the amount of each species, be the same for the signal from the internal standard as for

the signal(s) from the species of interest in the ideal case. Acceptance criteria and corrective

action procedures for out-of-control internal standard spike results are listed in the

laboratory QAPPs.

7.6 Element B6 – Instrument/Equipment Testing, Inspection and Maintenance

This section describes the instrument testing, inspection and maintenance procedures.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

7.6.1 Field Instruments

All measuring equipment must be calibrated and maintained on a periodic basis dependent on the

manufacturer's maintenance schedule. The purpose of preventative maintenance is to address

potential problems before they occur and to verify that equipment/measurement systems operate

adequately when used to collect environmental data. Specific preventative maintenance

procedures to be followed for the field equipment are those recommended by the manufacturer

and those described in the applicable SOPs. Documentation of equipment maintenance shall be

maintained by the field notebook.

Proper equipment cleaning and field decontamination procedures are necessary to prevent cross

contamination of samples. Sampling equipment will be decontaminated prior to the start of

activities and between sampling locations. Decontamination of equipment may involve the use

of a laboratory grade, phosphate-free detergent such as Alconox or Liquinox. Equipment will be

rinsed with tap water obtained from a local municipal supply or commercial source. Distilled,

de-ionized water will be used as the final water rinse.

Field personnel performing the sample collection activities and handling of equipment will don a

new pair of nitrile gloves prior to use of the equipment, between sampling and between

decontamination procedures.

A summary of the maintenance requirements for field equipment used at the Site is provided in

Table 6.

7.6.2 Laboratory Instruments

As part of their QA/QC program, the laboratory will conduct a routine preventative maintenance

program in an effort to minimize the potential occurrence of instrument failure and other system

malfunctions. These procedures will be documented by the laboratory and will be verified

through laboratory audits conducted by the laboratory QA/QC Officer.

Appropriate documentation of all equipment/instrument maintenance shall be maintained by the

laboratory personnel and shall include what was done, date, time (if appropriate), next scheduled

maintenance, equipment status, anomalies, and personnel performing maintenance. This

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

documentation shall be entered into specific maintenance log forms for laboratory maintenance

activities as described in the laboratory QAPPs and SOPs.

7.7 Element B7 – Instrument/Equipment Calibration and Frequency

This section describes the instrument calibration procedures.

7.7.1 Field Instruments

Field instruments and equipment will be calibrated in such a manner that accuracy and

reproducibility of results are consistent with the manufacturer's specifications. Calibration of

field instruments will be performed at the intervals specified by the manufacturer, or more

frequently as conditions dictate. In the event that an internally calibrated field instrument fails to

meet calibration/checkout procedures, it will be removed from service until the problem is

resolved. Any field equipment that fails to calibrate should be documented in the field notebook,

including the date and reason for calibration failure. Additionally, when the field equipment

problem is resolved it should also be documented in the field notebook.

Field instruments that are rented from third-party rental services should be calibrated prior to

being delivered to the Site. Documentation of calibration should be provided by the

rental service or onsite calibration will need to be performed. A summary of the calibration

requirements for equipment used at the Site is provided in Table 6.

7.7.2 Laboratory Instruments

Calibration of laboratory equipment for analyses will be based upon approved written procedures

in accordance with the requirements of the various analytical methods. Specific instrument

calibration information should be provided in each laboratory QAPP.

Analytical instruments will be calibrated in accordance with the referenced analytical methods.

Calibration standards are prepared in the laboratory by dissolving or mixing a known amount of

nominally pure analyte in the appropriate matrix using volumetric containers. Calibration

standards must be prepared from a standard source that is traceable to a certified primary

reference material. All calibration standards must be prepared so that the types and

concentration of the reagents used in the standard preparation are equivalent to the types and

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

concentration of the reagents used in preparing the samples to be analyzed. Records of standard

preparation and instrument calibration will be maintained by the laboratory.

Initial calibration and continuing calibration verification checks will be performed in an effort to

determine that the instrument is capable of producing acceptable qualitative and quantitative

data for the particular method being analyzed. Initial calibration is performed to demonstrate

acceptable performance at the beginning of the analytical run and to verify the linearity of the

instrument response within a specific concentration range. The continuing calibration is

performed to ensure that the initial calibration is still valid for the instrument. Calibration

protocols, including calibration frequencies, conditions, and acceptance criteria, are described in

the laboratory QAPP.

7.8 Element B8 – Inspection/Acceptance of Supplies and Consumables

Certain supplies and consumables associated with the field sampling program are considered

"critical", (i.e., which may directly or indirectly affect the quality of the results). These include

sample containers, tubing, and filters. The RI Field Manager will be responsible for ensuring

that an adequate supply of the critical supplies and consumables is available and that

consumables are certified clean. The employees conducting the field activities will be

responsible for receiving all supplies / consumables and verifying that all materials are stored in

a safe location until being used. The employees conducting the field work should communicate

with the RI Manager if supplies need to be replaced or additional supplies need to be procured.

Sample containers will be provided by the laboratory, pre-cleaned and with appropriate

preservative added. The laboratory has a control procedure in place to ensure cleanliness of

sample containers, as described in its QAPP. In addition, there are other laboratory-related

critical consumables such as reagent water and reference standards. The adequacy of these

materials will be ensured and documented in accordance with the laboratory's QAPP.

7.9 Element B9 – Non-Direct Measurements

This element is intended to address data obtained from existing sources rather than directly

measured or generated during the RI/FS.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

During the RI/FS, discharge of the Flathead River will be automatically measured at the closest

USGS gauging station, which is located approximately three miles southwest of the Site near

Columbia Falls (USGS Station #12363000). The USGS data will be used in conjunction with

data collected from a temporary staff gauge that will be installed within the Flathead River to

develop a relationship of the Flathead River discharge immediately adjacent to the Site. River

levels measured at the staff gauge will be used in conjunction with measured groundwater

elevations to evaluate groundwater / surface water interactions.

Also during the RI/FS, meteorological data may be used to evaluate the potential impacts of

precipitation events. Meteorological data will be downloaded from the National Oceanic &

Atmospheric Administration (NOAA) website for the weather station located at Kalispell Glacier

Park International Airport, located in Kalispell, Montana (Station ID# 244560).

No additional outside data sources are expected to be used during the RI/FS.

7.10 Element B10 – Data Management

The RI/FS will generate an extensive amount of information that needs to be properly

documented and managed in order to support risk assessment, remedy selection decisions and

any legal or cost recovery actions. Therefore, data management procedures will be followed to

ensure the quality, validity and security of the RI/FS data.

Roux Associates is the custodian of the project files and will maintain all relevant records,

reports, logs, field notebooks, pictures, and subcontractor reports in a secured area and under

custody of the RI Project Manager. Access will be restricted to project personnel, and the ability

to view and/or add or change data will be granted to only those individuals identified and trained

to perform those tasks. To the extent practical, data will be obtained and archived electronically.

When electronic data collection is not practical, data will be archived in the project files.

The non-electronic data (and reports that are evaluated including reports received for the

Historical Data Review) will also be scanned for electronic archiving.

ROUX ASSOCIATES. INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

A variety of data will be generated during the RI/FS field program, including photos, manual

field measurements, data collected and logged automatically by field instruments, and results of

chemical analyses. Management of these data will vary from type to type, as discussed below.

Photo Documentation

Field personnel are encouraged to use digital photography to document Site features or field

activities. Photos will be collected and stored within the project file in accordance with

Roux SOP 6.5.

Manual Field Measurements

Manual field measurements will be recorded in field logbooks or activity-specific field

datasheets. Entries in the field logbooks will be photocopied as soon as practicable following

each Site visits to ensure that a backup copy of the field measurements exists in the event the

field logbook is lost, stolen, or destroyed. Photocopies of field logbooks will be kept in the

project file. Field datasheets will also be returned to the office as soon as practicable following

each site visit. Field datasheets will be digitized and kept in the project file. Field datasheets are

described in Section 6.7.2 and example datasheets are attached to this QAPP in Appendix B.

Laboratory Results

The analytical laboratory will provide a summary report, electronic data deliverables (EDDs),

and a CLP-Level IV equivalent data package. The Level IV data package will contain data to

perform a data validation to evaluate whether the data meets the performance and acceptance

criteria as described in Section 6.5.

Level IV data packages will include the following:

sample results

forms and checklists summarizing all OC measurement parameters specified in the

method

• all associated raw data generated in support of the reported results

Forms summarizing all QC measurement parameters specified in the method include:

instrument tuning summary and associated sample summary

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

initial and continuing calibration data summaries

internal standard response and retention time summaries

laboratory control sample (LCS) data summaries

MS results

surrogate standard results

laboratory duplicate summaries

Raw data will include copies of all associated instrument printouts and laboratory notebook records that were generated during sample preparation and analysis.

Laboratory EDDs delivered to Roux Associates will be uploaded into Roux Associates' EQuIS[™] project database described below.

Project Database

A database will be created to organize, analyze, and store project information and data. EQuISTM, a relational database system based on Microsoft Access, is the system currently planned for use at the Site. EQuISTM, or an alternative system will similar capabilities, will be used to:

• Provide a single centralized repository for field measurement data and laboratory analytical results (soil, soil gas, groundwater, surface water, sediment and sediment porewater).

• Provide a user-friendly interface for database queries and generation of data summary tables.

• Allow the data to be viewed and displayed in a GIS compatible format, along with other GIS data layers.

• Provide detailed information about sampling locations, sample types, sampling and analytical methods, results, and QA information.

• Provide simple comparisons to regulatory standards or risk-based screening levels, along with calculations of descriptive statistics.

• Generate export files to spreadsheets, data analysis software, or other databases according to their requirements.

Laboratory analytical data will be added to the database using standardized formats and a QA

program. The QA program checks the format and completeness of chemical data. Most data

will be transferred directly from the laboratories via electronic files to eliminate the potential for

error during keyboard data entry.

All data that is manual input into the database will be printed, 100% verified against the original

source documents, and corrected if necessary within the EQuIS system. The hard copies will be

initialed as they are checked during verification of electronic versions of the original source

documents.

All validated results of sampling and tests and all other validated data received by CFAC will be

made available to the EPA via web access. Access credentials to the web access will be

provided following setup of the project database. The validated data will also be provided in

progress reports noted in Table 10 of the RI/FS Work Plan. The RI/FS Manager has overall

responsibility for the project database. The RI Manager will be responsible for ensuring that the

project database is updated during the Phase I Site Characterization.

Roux Associates IT department will provide backup of the electronic database daily.

Additionally, the need for any upgrades to the hardware or software required to manage the

RI/FS data will be determined jointly by Roux Associates IT department and the RI/FS Manager.

Any upgrades needed will be completed as necessary to facilitate the project.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

8.0 GROUP C – ASSESSMENT AND OVERSIGHT

The two elements in this group detail the assessments and evaluations that will occur during implementation of the RI/FS to determine whether this QAPP is being implemented as approved, to increase confidence in the information obtained, and ultimately to determine whether the information may be used for its intended purpose.

8.1 Element C1 – Assessments and Response Actions

Five internal field audits will be conducted by the QA Officer or his/her designee during the Phase I Site Characterization Program. The major sampling activities to be audited include soil gas screening/passive soil gas sampling, soil sampling, sediment sampling, groundwater gauging and sampling, and surface water sampling. The audits will focus mainly on measurement and sampling procedures, to ensure that representative data are being generated in the field. The audits will be timed to occur early implementation phase of each activity to allow for timely corrective action, if needed, prior to the generation of a significant amount of data. The field audits will ensure that data being collected during the RI meets the DQOs for the RI. All field audits should be provided to the RI/FS Manager and RI Manager via email for filing in the project records.

If any deviations are noted during the field audit, the QA Officer has full authority to stop work and discuss the deviation with the field personnel. The QA Officer will develop a corrective action plan that will be communicated with the field personnel and the RI/FS Manager, with clear consensus regarding the individual responsible to complete the action. The QA Officer should define a timely schedule and should verify all corrective actions are completed and documented in the project file. Laboratory calibration and checks are discussed in Section 7.5.2. Laboratory corrective actions generally address the need to bring data generating systems back into conformance after some trigger or other criteria have shown the system to be out of conformance. Generally, laboratory functional problems may occur during sample handling, sample preparation, laboratory analysis, and data review. The need for laboratory analysis corrective actions is based upon predetermined limits for accuracy, precision, and completeness. By conducting system and performance audits, the Laboratory QA Officer will determine if the data are acceptable and if corrective actions are necessary. The analytical laboratory will perform internal audits and corrective actions in accordance with its QAPP.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

8.2 Element C2 – Reports To Management

As described above, at least five field QA audits are scheduled in addition to any laboratory audits that may be conducted. The field QA reports will be prepared by the QA Manager and submitted to the RI/FS Manager and RI Manager for storage in the project files. In addition, the QA Manager may prepare correspondence and submit to the RI/FS Manager, if needed, to document any corrective actions that may be required.

9.0 GROUP D - DATA VALIDATION AND USABILITY

The three elements in this group address the final project checks to determine whether the data

developed conform to the stated objectives of the project and to estimate the effect of any

deviations.

9.1 Element D1 – Data Review, Verification, and Validation

This element identifies the criteria for deciding to accept, reject, or qualify project information.

Such decisions will be based on the data review, verification, and validation procedures

described below in Section 9.2, which will determine whether the data meet the project DQOs.

Analytical data will need to achieve specific criteria in order to minimize the possibility of either

making erroneous conclusions or failing to keep uncertainty in estimates to within acceptable

levels.

Performance and acceptance criteria, together with the appropriate level of QA practices, will

guide the evaluation of existing data relative to the intended use. Section 6.5 of this QAPP

provides specific details regarding the precision and accuracy control limits, and MDLs/ PQLs,

for each of the target analytes and matrices, and the overall project goals for completeness and

representativeness. Data which do not meet one or more performance criteria may still be

acceptable for project use, although some degree of qualification may be required. Data grossly

failing to meet one or more performance criteria will be rejected, unless substantial other

evidence supports use with qualification.

Use of statistical intervals to evaluate decision errors will not be performed as part of the

investigation because sampling will be primarily focused on determining conditions around Site

features and potential source areas. Measurement error will be the primary factor affecting any

decision. Error encountered as a result of sampling procedures will be limited to the extent

practicable by following approved EPA methods and applicable standard operating practices.

9.2 Element D2 – Verification and Validation Methods

Field data validation will initially be performed by the field personnel while collecting

data/samples. QA/QC of the field data is the responsibility of the RI Manager. Field data

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: <u>Nov 2015</u>

validation includes ensuring that data was properly collected and handled according to the

sampling procedures described in this SAP and the SOPs. Decisions to repeat data collection

and/or void data may be made by the RI Manager, if necessary, based upon the extent of the

deficiencies and their importance in the overall context of the RI. The RI Manager may discuss

the results of the field data verification and validation with the RI/FS Manager. The RI/FS

Manager will ultimately decide if the data is unusable or if additional validation steps may be

required. If data is deemed unusable, either the RI Manager or the RI/FS Manager will discuss

with the project staff.

Validation of laboratory data will be performed in accordance with the following USEPA

guidance:

• National Functional Guidelines for Organic Data Review (USEPA, 2014a);

• National Functional Guidelines for Inorganic Data Review (USEPA, 2014b); and

• Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund

Use (USEPA, 2009).

All laboratory data packages will be verified and validated using a Stage 4 validation to evaluate

whether the data meets the performance and acceptance criteria. The Stage 4 validation will be

performed on 100% of the laboratory data generated during the RI/FS to support risk assessment

and remedy selection. As described in the guidance (USEPA, 2009), the Stage 4 verification and

validation will include completeness and compliance checks of sample receipt conditions, both

sample-related and instrument-related QC results, recalculation checks, and the review of actual

instrument outputs.

ROUX ASSOCIATES, INC.

Page [PAGE]

PROJECT# 2476.0001Y.100/SAP REVISION# <u>0</u> DATE: Nov 2015

All data packages will be reviewed by a qualified, third-party data validator. The data validator will document findings by adding appropriate validation qualifiers (as necessary) to the sample results in the laboratory data packages based on the various verification and validation tasks. The following qualifiers will be applied to the data to identify data limitations identified during validation:

U	 The analyte was analyzed for, but was not detected above the level of the reported sample quantitation limit.
UJ	 The analyte was analyzed for, but was not detected. The reported quantitation limit is approximate and may be inaccurate or imprecise.
J	 The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample.
J+	 The result is an estimated quantity, but the result may be biased high.
J-	 The result is an estimated quantity, but the result may be biased low.
R	 The data are unusable. The sample results are rejected due to serious deficiencies in meeting Quality Control (QC) criteria. The analyte may or may not be present in the sample.

A summary of the data verification and validation processes will be included in a Data Summary Usability Report (DUSR). The verified and validated analytical data will be included in the RI Phase I data summary report. The QA Officer is responsible for communicating with the data validator to ensure the data is validated. It is the ultimate responsibility of the RI/FS Manager to ensure that the entirety of the laboratory data collected during the RI/FS is validated.

9.3 Element D3 – Reconciliation With User Requirements

Once all samples have been collected and analytical data has been generated, data will be evaluated to determine if DQOs were achieved. Only data generated in association with QC results meeting the stated acceptance criteria (i.e., data determined to be valid) will be considered usable for decision making purposes. Rejected data will be clearly indicated during validation and made unavailable for use. The Phase I data summary report will include a qualitative and quantitative review of all QC samples and all deviations from the SAP described in this report, along with conclusions regarding the reliability of the data for their intended use.

Respectfully submitted,

ROUX ASSOCIATES, INC.

Michael Ritorto Senior Hydrogeologist

Andrew Baris Principal Hydrogeologist/ Vice President

10.0 REFERENCES

- Amplified Geochemical Imaging, LLC, 2015. Soil Gas and Subslab Soil Gas Description of Services.
- CFAC, 2013. CFAC PowerPoint Presentation for EPA. June 3, 2013.
- Hydrometrics, 1993. Assessment of Hydrologic Conditions Associated with the Closed Landfill and Calcium Fluoride Pond North of the Columbia Falls Aluminum Company Plant and Plant Water Well Number 5, March 1993.
- Hydrometrics, 2013. Background Concentrations Of Inorganic Constituents In Montana Surface Soils, September 2013.
- Interstate Technology & Regulatory Council, 2012. Incremental Sampling Methodology, February 2012.
- U.S. Environmental Protection Agency (EPA), 1988. USEPA Guidance for Conducting Remedial Investigations and Feasibility Studies Under CERCLA, October 1988.
- U.S. Environmental Protection Agency (EPA), 1996. USEPA Soil Screening Guidance Users Guide, Second Edition, July 1996.
- U.S. Environmental Protection Agency (USEPA), 1998. AP 42, Fifth Edition, Volume I, Chapter 12: Metallurgical Industry, Section 12.1 Primary Aluminum Production. October, 1998.
- U.S. Environmental Protection Agency (USEPA), 2002a. Guidance for Quality Assurance Project Plans. December, 2002.
- U.S. Environmental Protection Agency (USEPA), 2002b. Guidance for Choosing a Sampling Design for Environmental Data Collection, EPA QA/G5-S, December 2002.
- U.S. Environmental Protection Agency (USEPA), 2006. Guidance on Systematic Planning Using the Data Quality Objectives Process, February 2006.
- U.S. Environmental Protection Agency (USEPA), 2009. EPA Guidance for Labeling Externally Validated Laboratory Analytical Data for Superfund Use, January 2009.
- U.S. Environmental Protection Agency (USEPA), 2010. Ground Water Sampling Procedure, Low Stress (Low Flow) Purging and Sampling Procedure for the Collection of Groundwater Samples From Monitoring Wells. January 2010
- U.S. Environmental Protection Agency (USEPA), 2014. Superfund Chemical Data Matrix (SCDM) database. Superfund, National Priorities List, HRS Toolbox. January 30, 2014.
- U.S. Environmental Protection Agency (USEPA), 2014. National Functional Guidelines for Organic Data Review. August, 2014.

ROUX ASSOCIATES, INC.

Page [PAGE]

- U.S. Environmental Protection Agency (USEPA), 2014. National Functional Guidelines for Inorganic Data Review. August 2014.
- U.S. Environmental Protection Agency (USEPA), 2015. Regional Screening Levels for Chemical Contaminants at Superfund Sites. January 2015
- Weston Solutions, 2014. Site Reassessment For Columbia Falls Aluminum Company Aluminum Smelter Facility Columbia Falls, Flathead County, Montana. April 2014.